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Abstract

TheWilson depression is the largest height variation in the solar photosphere.
Quantifying it is key in the understanding of sunspots. In this work we present a
method for a stereoscopic analysis of the height variations in the solar photosphere
and to produce the first direct estimates of theWilson depression. This stereoscopic
method allows for the first time to directly compute height variations on the solar
surface.

The method presented in this work yields variations in altitude of the solar sur-
face by shifting and correlating two images, mapped along the same epipolar surface
profile observed from two different vantage points. This method relies on epipolar
geometry and requires a precise camera calibration to resolve the altitude variations
of a few hundred kilometers.

The performance and constraints of our method are tested using simulated
Stokes-I continuum observations of an MHD simulation of the solar-surface lay-
ers. The resulting height estimate is then introduced as an initial height estimate
in an optimization algorithm in order to reproduce smaller scale structures. The
height estimates from our method reproduce well the overall height variations of
the MHD simulation. When applied to test data, our method yields reliable results
for a separation of the viewing points between 10○ and 40○; and a signal to noise
ratio (SNR) of at least 50. We also test the effect that the resolution of the data has
on the performance of the method.

We also apply our method to simultaneous continuum intensity observations of
a sunspot from Solar Orbiter’s Polarimetric and Helioseismic Imager (SO/PHI) and
Solar Dynamic Observatory’s Helioseismic Magnetic Imager (SDO/HMI) observed
on October 29th of 2022. The process of the calibration and rectification of the data
as well as the necessary corrections to the data in order to apply the method to the
observations are presented.

The results of the stereoscopic analysis of the sunspot, yield aWilson depression
of roughly 800 km. The resolution of the data is the most limiting factor of the
performance of the method. A discussion of the method and its limitations, its
performance and the obtained results are presented, and possible extensions of the
method as well as possible applications of it are discussed.





Zusammenfassung

DieWilson-Depression ist die größteHöhenvariation auf der Oberfläche Sonne.
Ihre Quantifizierung ist von enormerWichtigkeit für das Verständnis von Sonnen-
flecken. In dieser Arbeit präsentieren wir eine Methode für eine stereoskopische
Bestimmung der Höhenvariationen in der Sonnenphotosphäre und damit einer
direkten Messung derWilson-Depression. Diese stereoskopische Methode ermög-
licht zum ersten Mal die direkte Bestimmung von Höhenvariationen auf der Son-
nenoberfläche.

Die in dieser Arbeit vorgestellte Methode beruhrt auf einer Korrleation von In-
tensitätsverteilungen, die von zwei verschiedenen Beobachtungspunkten entlang
von epipolaren Oberflächenprofilen auf der Sonne gleichzeitig beobachtet wurden.
DieVariation der Oberflächenhöhe kann aus einer kleinenVerschiebung der Inten-
sitätsprofile erschlossen werden, die den besten Korreltionswert ergibt. DieMetho-
de basiert auf einer epipolaren Geometrie und erfordert eine präzise Kamerakali-
brierung, um Höhenvariationen von einigen hundert Kilometern aufzulösen.

Die Leistungsfähigkeit unserer Methode wird anhand synthetischer Stokes-I-
Kontinuumsbeobachtungen aus MHD-Simulationen einer aktiven Region in der
Photosphäre getestet. Das Ergebnis der Korrelationsmethode wird dann als erste
Höhenschätzung einemOptimierungsalgorithmus zugeführt, um auch dieHöhen-
schichtung kleinerer Strukturen zu reproduzieren. Bei der Anwendung auf die-
se Testdaten liefert unsere Methode zuverlässige Ergebnisse für einen Winkelab-
stand der Beobachtungspunkte zwischen 10○ and 40○ und für ein Signal-Rausch-
Verhältnis von mindestens 50.Wir untersuchen auch den Effekt, den die räumliche
Auflösung der Testdaten auf die Ergebnisse der Methode hat.

Nachdem wir die Leistungsfähigkeit unserer Methode anhand von Simulatio-
nen gezeigt haben, wendeten wir sie auch auf gleichzeitige Beobachtungen der Kon-
tinuumsintensitäts eines Sonnenflecks an, die vom Polarimetric and Helioseismic
Imager des Solar Orbiters (SO/PHI) und demHelioseismicMagnetic Imager des So-
lar Dynamic Observatory (SDO/HMI) am 29. Oktober 2022 aufgenommen wurden.
Der Prozess der Kalibrierung und Rektifizierung der Daten sowie die notwendi-
gen Korrekturen der Daten zur Anwendung der Methode auf die Beobachtungen
werden präsentiert.

Die Ergebnisse der stereoskopischen Analyse des Sonnenflecks ergeben eine
Wilson-Depression von etwa 800 km. Es zeigt sich, dass die Auflösung der Daten
der limitierende Faktor für die Leistungsfähigkeit unserer Methode ist. Abschlie-
ßend werden die erhaltenen Ergebnisse die Einschränkungen sowie mögliche Er-
weiterungen der Methode und zukunftige Anwendungen der Methode präsentiert.
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Chapter 1

Introduction

The aim of this work is to determine theWilson depression of sunspots and pores
by applying a direct observational method. A stereoscopic method, using combined
simultaneous observations from two vantage points was created to estimate 3D pho-
tospheric height variations of surface structures.

This introductory chapter gives a brief description of what sunspots and the
Wilson depression are, as well as some history on the previous attempts to quantify
the latter. An introduction on stereoscopy is also provided. All the basic equations
to understand the stereoscopic principles for the analysis performed further down
in this work are described aswell in this chapter. Finally, a brief overviewof previous
stereoscopic studies of the Sun is given.

1.1 Sunspots andWilson Depression
Sunspots are magnetic structures, visible as darker regions on the solar surface.
They are characterized byhaving anumbra, where they appear darkest; and a penum-
bra, a less darker region surrounding the umbra (see Fig. 1.3). In order to describe
and better understand sunspots, a few basic concepts must be introduced. This in-
troduction will give a brief summary of radiative transfer, the solar photosphere
and the magnetic structures, the concept of flux tubes and magneto-convection, a
simplified model for sunspot formation, and finally a description of sunspots.

1.1.1 Radiative Transfer
Radiative transfer is the process by which energy is transferred by electromagnetic
radiation. It is the main mechanism of energy transport in the solar photosphere
and above (Murray, 2013). To obtain the basic equations of radiative transfer we first
consider a light beam traveling through a small area dA, inside a solid angle dω,
with an inclination of θ with respect to the normal of A over a given time dt. The
energy E crossing the area is given by

dE = I cosθ dA dt dν dω, (1.1)

where I is the specific intensity of the light beam in a particular frequency range
dν.

As light propagates through a medium, it can be affected by processes of emis-
sion, absorption or scattering. The intensity I of a beam is increased by emission



4

processes and decreased by absorption. The emission may be independent of I
(spontaneous), or, like the absorption, proportional to I (induced).

Consider a beam with intensity I traveling in the z direction through a medium
of thickness dz for a case with simplified geometry, where θ = 0○. This medium
might add or subtract energy from the beam by the above mentioned processes. If
jν is the spontaneous emission coefficient of the medium at frequency ν and κν is
the absorption coefficient, the energy added and subtracted to the beam is

dEadded = jν dA dt dν dz (1.2)

and
dEsubstracted = −κνI dA dt dν dz, (1.3)

respectively. The change in intensity over dz is

dI = [jν − κνI]dz →
dI

dz
= −κνI + jν . (1.4)

Equation 1.4 is known as the radiative transfer equation (RTE), for which z is the
beam’s direction of propagation. The ratio between the emission and absorption
coefficients is known as the source function Sν ≡ jν/κν . With this definition, Eq.
(1.4) can be written as

dI

dz
= −κν(I − Sν). (1.5)

The radiative transfer equation can also be written in terms of optical depth, τ .
The optical depth is a measure of the transparency of the medium, and describes
the probability of a photon reaching the observer while traveling through it. If τ < 1,
themedium is transparent, or optically thin; and for τ ≥ 1, themedium is opaque, or
optically thick. It is defined as dτν = −κνdz, which after integration is τ = − ∫ κνdz.
With the former definition Eq. 1.5 can be rewritten as

dI

dτ
= I − Sν . (1.6)

It can be assumed that in the solar photosphere the radiative transfer occurs un-
der local thermodynamic equilibrium (LTE). LTE is a valid assumption when col-
lisions dominate over photonic processes, so that the internal energy distribution
within the atoms can be described by a Boltzmann distribution and their ionization
equilibrium by Saha-Boltzmann (Stix, 2004). Then the ratio of emission to absorp-
tion is a function only of the wavelength and the local temperature.

The photosphere is the Sun’s visible surface layer. It is a region fromwhichmost
of the Sun’s visible light at 500 nm is emitted (Priest, 2014b), i.e. where τ varies from
τ >> 1 to τ << 1 for visible wavelengths. It is the lower layer of the solar atmosphere,
or the directly observable surface of the Sun in visible light. The standard way to
define the solar surface is through its radiation.

The photons traveling from the solar core outwards go through a random path,
being repeatedly absorbed and re emitted. The distance over which photons can
travel before being reabsorbed is called mean free path. The mean free path in the
Sun increases with increasing radius as the density and opacity decrease. The radius
at which the mean free path is so large that the majority of photons can escape from
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the Sun is defined as the solar surface and corresponds to τ = 1. Here τ refers to
the optical depth, and its height is dependent on the wavelength. The τ = 1 surface
at 500 nm is used as a standard for the solar surface (Priest, 2014a).

The radiation comes from different layers in the solar surface. However, since
most of the radiation comes from the τ = 1 layer at 500 nm, this approximation is
sufficient to consider this layer as the solar surface for the purposes of this work.
Usually, two approaches are used to quantify the contribution of each atmospheric
layer to the emitted radiation: the contribution function (CF ), which gives the rela-
tive contribution of each atmospheric layer to the radiation; and the response func-
tion (RF ) which measures the response of a given quantity (e.g. temperature, or
magnetic field strength), to perturbations in a given atmospheric layer (Magain,
1986).

The contribution function can be obtained by solving the RTE equation. A so-
lution of the RTE equation (Beckers & Milkey, 1975) is

I(τ) = ∫
∞

0
Sνe

−τdτ,

and the integrand of the solution is defined as the contribution function:

CF ≡ Sνe
−τ .

The response function (RF) can be defined as the response of the intensity to local
changes of a given quantity q at a given optical depth τ or at a given geometrical
depth z:

RFq(τ) =
∂I

∂q(τ)
or RFq(z) =

∂I

∂q(z)
.

These definitions of the response and contribution functions are very simpli-
fied and their derivation is not included. Detailed discussions and derivations can
be found in e.g., Del Toro Iniesta (2003) and Gray (2021). A very basic assumption
throughout this work is that the vertical extent of the response function to, say,
temperature with depth z, RT (ξ, z), at a given position ξ on the solar surface can be
replaced by

RT (ξ, z)→ δ(z − h(ξ))∫ RT (ξ, z)dz, (1.7)

i.e., by an effective, height integrated response concentrated at a height h(ξ).

1.1.2 Granulation
The solar surface is covered by granulation. Granules are the manifestation in the
photosphere of the turbulent convective motions in the Sun’s convective zone and
each granule represents the top of a convective cell rising from the solar interior.
Granulation is seen in the solar photosphere as a cellular pattern that covers es-
sentially the whole Sun, except where sunspots appear. At any given time there are
millions of granules present in the photosphere, which are bright isolated elements
that appear on a dark background of multiple connected intergranular lanes (Bray
et al., 2009)

Convection is the main energy transport mechanism just below the solar sur-
face. By convection, the different layers of plasma are mixed and the temperature
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gradient is reduced. If the vertical temperature gradient∇T in a fluid is steeper than
the adiabatic temperature gradient ∇adT , then ∇T is said to be super-adiabatic. A
super-adiabatic temperature gradient makes the medium unstable for convection.
Therefore the condition for convection is ∇T > ∇adT .

By convection tiny intense flux tubes are concentrated (see Section 1.1.3) at gran-
ulation boundaries (Stix, 2004). A granule in the photosphere is the top of a small
convective cell. There are two main cell sizes: granules of the order of ∼ 100 to
1000 km in diameter and with a lifetime of ∼ 10minutes, and supergranules with a
diameter of ∼ 30,000 km and lifetimes of 1 to 2 days (Murray, 2013). Granules con-
tinuously appear and disappear in a turbulent manner and have irregular shapes.
Their centers are bright, consisting of hot rising plasma, while their boundaries are
dark, due to the cool falling material (Bray et al., 2009).

1.1.3 Magnetic Flux Tubes
The magnetic field in the photosphere has a wide range of scales and strengths. It
can be concentrated forming magnetic flux tubes, regions of space through which
strong magnetic field passes (e.g. Parker, 1979; Schüssler et al., 2003; Ryutova et al.,
2015). The basic equations to study magnetic fields in an MHD approximation are
Gauss’s law of magnetism

∇ ⋅B = 0, (1.8)

Ampere’s law
∇×B = µj, (1.9)

the induction equation

∂B

∂t
= ∇× (u ×B) + ηD∇2B, (1.10)

the equation of motion

ρ( ∂
∂t
+ u ⋅ ∇)u = j ×B −∇p − ρg, (1.11)

and the continuity equation
dρ

dt
+ ρ∇ ⋅ u = 0, (1.12)

where B is the plasma magnetic field, ηD = 1/µ0σ is the magnetic diffusivity, σ is
the electric conductivity, ρ the plasma density, u the plasma flow velocity, j is the
electric current density, and g is the gravity.

If the model consists of a simple magnetic flux tube with cylindrical symmetry,
it can be considered as a group of magnetic field lines that are bounded by a closed
contour (see Fig. 1.1).

Assuming hydrostatic equilibrium (u = 0), Eq. 1.11 is

−∇p + j ×B − ρg = 0. (1.13)

With g acting along the negative z−axis and if the magnetic field depends only on
the radial coordinate, such that B = B(0,0,Bz(R)), Eq. 1.13 can be integrated to

pi(R) +
B2

z

2µ
= pe +

B2
ze

2µ
, (1.14)
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Figure 1.1: A vertical magnetic flux tube embedded in a vertically stratifiedmedium.
Taken from Priest (2014b).

where pi and pe are the gas pressures inside and outside the flux tube. In the pres-
ence of gravity acting along the negative direction of the z-axis, Eq. 1.13 is

dp

dz
+ ρg(z) = 0. (1.15)

The equations above describe the magnetic field and the motion inside vertical
magnetic flux tubes, which is the approximation considered in this work to describe
sunspots.

Magnetic flux tubes have a typical magnetic field strength of 1 kG in the photo-
sphere, which decreases with height. As a flux tube expands with height, the mag-
netic field strength ranges from 1500 to 1700 G in the bottom of the photosphere,
from 1000 to 1200 G in the middle, and from 200 to 500 G in the top of the photo-
sphere. The plasma beta β = p

B2/2µ0
, which is the ratio of the plasma pressure to the

magnetic pressure, is around 0.3 or lower in the flux tubes, meaning that the plasma
within is dominated by the magnetic field (Solanki et al., 2006; Priest, 2014a).

1.1.4 Active Regions and the Solar Cycle
Magnetic flux emerges from the photosphere through a wide range of scales. Active
regions are large-scale regions of magnetic flux emergence. They appear as regions
of enhanced and complexmagnetic field around the solar equator. They are formed
by concentrations of intense flux tubes. Sunspots and pores can be found within
active regions. Active regions are generally restricted to the activity belts on the
Sun, usually within a heliographic latitude of φ = ∓30○ on both solar hemispheres.
The latitude on which active regions and sunspots can be seen varies with the solar
cycle ; at the beginning of a cycle the sunspots appear in a latitude range of 20○ to
30○, which becomes broader as the solar cycle evolves, and the central latitude of
the activity belt shifts towards the equator (see Solanki, 2003; Maunder, 1903). Most
aspects of the solar activity, including active regions and sunspots are due to the
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magnetic field and are a representation of how the solar plasma responds to the
underlying magnetic field evolution during a solar cycle (Priest, 2014a).

The solar cycle describes the solar magnetic field on the largest scale, the scale
of the field of the Sun as a whole, in which its magnetic activity changes almost
periodically every 11 years. The solar magnetic activity is measured in variations in
the number of observed sunspots, so that the best indicator of the solar cycle is the
sunspot relative number

R = k(10g + fs),

where g is the number of sunspot groups, fs is the total number of spots, and k is
a calibration constant. A plot of the sunspot number for the last five solar cycles is
displayed in Fig. 1.2. Each solar cycle starts from one minimum and lasts until the
next minimum with an average duration of 11 years. On each solar cycle the mag-
netic polarities of sunspots reverse, and the behavior of the entire solar magnetic
field is governed by this reversal (Stix, 2004). At the maximum of the solar cycle, the
biggest number of sunspots is observed, and the solar activity is increased, and the
opposite happens at solar minimum.

Figure 1.2: The monthly mean sunspot number (blue) and 13-month smoothed
monthly sunspot number (red) for the last five solar cycles. Image courtesy of the
Royal Observatory of Belgium.

1.1.5 Sunspots
The most visible feature about sunspots and pores is that they are darker than the
quiet Sun. Sunspots are differentiated from pores because pores are smaller and
don’t have a penumbra (Solanki, 2003). This brightness signature is the basis for
their identification (Solanki, 2003). Sunspots have a typical radius of 10 to 20 Mm
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Figure 1.3: Continuum image of the solar photosphere showing sunspots, where the
umbra and the penumbra are, and pores. Image recorded by SO/PHI (Solanki et al.,
2020). More information on this instrument can be found on Chapter 4.

and consist of a central dark region, called the umbra, with a radius about 40 percent
of the overall spot radius, surrounded by a less dark penumbra, with a filament like
structure (Solanki, 2003). Their brightness, and therefore their temperature profiles
change with the position within the spot. Compared to the quiet photosphere, the
umbra radiates only 20 to 30 percent of the average flux density; while the penumbra
radiates 75 to 85 percent (Priest, 2014b). The umbra at the surface is cooler than the
photosphere by 1000−1900K , while the penumbra is colder by 250−400K (Solanki,
2003). An example of a typical sunspot, with its umbra and penumbra, as well as of
pores is displayed in Fig. 1.3.

The depletion in temperature and brightness in a sunspot occurs because the
magnetic field inhibits the convection. Themagnetic field within sunspots is nearly
vertical in the umbra, while its strength leads to a plasma beta β << 1, so that the
plasma within is dominated by the magnetic field.

The Lorentz force suppresses the motions across field lines below the solar sur-
face so that most of the convection inside the sunspot’s umbra is inhibited, and
the temperature decreases vertically faster within the spot than in the surrounding
region (Priest, 2014b).

In the radiative zone of the Sun the energy transport is by a random walk of the
photons. In the convective zone the temperature gradient becomes super-adiabatic
and convection sets in, taking over the energy transport. If the convection is sup-
pressed by a strongmagnetic field, less energy reaches the surface inside the sunspot
in comparison to the quiet sun, and therefore sunspots appear dark. Part of this
blocked energy is redistributed through diffusion in the convection zone within a
timescale of onemonth to one year (Spruit, 1982). This additional redistributed heat
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does not lead to a measurable increase in the temperature of the convection zone
because of its large heat capacity. The excess blocked energy is released during a
105 year timescale through thermal relaxation (Spruit, 1982). This is known as the
Kelvin-Helmholtz timescale.

The magnetic field in the center of the umbra is nearly vertical and increases
with the overall size of the umbra, which is the part of the sunspotwith the strongest
magnetic field (Murray, 2013). Themagnetic field strength in the umbra ranges from
1800 to 3700G in the umbra and varies within the sunspots, reaching a range of 700
to 1000G at the edge of the penumbra, resulting in an average over one sunspot of
1000 − 1500G (Solanki, 2003; Livingston, 2002). In the penumbra the inclination of
the field increases with the radius, being close to vertical at the edge of the umbra
and with a mean value of 70 to 80 degrees with respect to the vertical at the edge of
the spot (Priest, 2014a).

A sunspot consists of an assembly of many small flux tubes that have progres-
sively gathered into a single large flux tube in the solar plasma (Parker, 1979) brought
to the surface by magnetic and convective forces, and swept together by photo-
spheric flows (Stix, 2004).

A scenario for the formation and evolution of sunspots from Meyer et al. (1974)
is as follows. A magnetic, Ω-shaped flux tube is brought up to the photosphere by
buoyant forces in the convective zone. This flux tube has a magnetic field strength
of over 1000 G, which is strong enough to dominate the plasma and resist the con-
vection so that the plasma in the tube cools down and falls (see Eq. 1.15 and Fig. 1.4).
Then the magnetic field strength increases to a point where the magnetic pressure
within almost balances the external gas pressure. Around the flux tube an annular
convection cell, called moat, is formed, with an upflow at the tube and an outflow
into the surrounding photosphere.

Figure 1.4: Scheme of a flux tube. From Priest (2014b).

1.1.6 The Wilson Depression

Early observations of sunspots indicate that the umbra of sunspots is situated at
a lower geometrical height than the quiet Sun (Wilson, 1774). The penumbra of a
sunspot on the solar limb side is foreshortened at a different rate than the one on
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the observer’s side, indicating that the geometrical height of the penumbra has a
slope. Close to the limb, the umbra is often partly covered and can disappear from
view. This is known as theWilson effect, which is the basis to infer the existence of
theWilson depression within sunspots. A scheme of theWilson effect is presented
in Fig. 1.5.

Figure 1.5: Scheme of the Wilson effect. The penumbra of a sunspot on the ob-
server’s far side is foreshortened at a different rate than the one on the near side.
This effect grows towards the solar limb. Taken fromWilson (1774).

TheWilson depression refers to the fact that the visible radiation from the um-
brae and penumbrae of sunspots emerges from a deeper geometrical layer than in
the quiet Sun (Solanki, 2003). The optical depth τ is depressed to a lower height in
the range 0.1 ≤ τ ≤ 1 (Gokhale & Zwaan, 1972). The τ = 1 level within a sunspot is
deeper than in the quiet Sun (see Fig. 1.7). This depression below the altitude level
of the quiet Sun’s surface is due to the strong magnetic field within the sunspots.
The stronger magnetic pressure and curvature forces balance with the lower gas
pressure within a sunspot and the lower opacity there. The height variation of the
Wilson depression is therefore relevant for the understanding of the magnetic and
geometric structure of sunspots and sets constraints on the strength and geometry
of the magnetic field.

A magnetohydrostatic pressure balance model for sunspots from Meyer et al.
(1977) considers a vertical flux tube with a static, axisymmetric field on a stratified
atmosphere,B(R, z) = [BR(R, z),0,Bz(R, z)] in a volume Vi, surrounded by a field
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Figure 1.6: A magnetic flux rope surrounded by a field free plasma. Taken from
Priest (2014b).

free region (Ve) (see Fig. 1.6). Assuming B(R = 0) = Bi on the axis of the tube, and
neglectingB outside of it, and naming the corresponding internal and external gas
pressures pi(z) and pe(z), respectively, the equations for equilibriumwithin the flux
tube and outside of it are

∇(pi +
B2

i

2µ
) = ρig + (Bi ⋅ ∇)

Bi

µ
and ∇pe = ρeg, (1.16)

respectively, with gravity g acting along the negative z−axis.
A first assumption is that the horizontalmagnetic field is zero, such thatB(R, z) =

[0,0,Bz(R, z)]. At the interface between the flux tube and the photosphere themag-
netic field drops discontinuously to zero. Therefore the total pressure balance at the
interface at a given height z is

pi(z) +
B2

i

2µ
= pe(z) or pi(z) − pe(z) = pmag,i, (1.17)

where pmag = B2
i /2µ is independent of height in the model. In this approxima-

tion the radial variations of Bz are not taken into account. Other models consider
this variation or match the pressure gradient with its derivative at the interface (e.g.
Simon &Weiss, 1970; Spruit, 1976; Simon et al., 1983).

Differentiating Eq. 1.17 with respect to z implies that dpe/dz = dpi/dz if B is
constant with z, and therefore, from Eq. 1.16 ρi = ρe for this approximation. From
Eq. 1.17 it can also be seen that pi < pe, or that the plasma pressure inside the spot is
smaller than outside of it. Assuming the general gas law, the temperature deficit is
therefore

Ti(z)
Te(z)

= 1 −
B2

i

2µpe(z)
. (1.18)

This implies that the presence of a vertical magnetic field does not affect the
plasma density, but results in a pressure (and therefore temperature) decrease in
order to maintain the horizontal pressure balance given by p(R, z) + B2(R)/(2µ).
This result also implies the magnetic field lines will be straight only if the plasma’s
thermal equilibrium produces this particular form for the temperature difference.
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Figure 1.7: Sketch of a model of the magnetic field configuration within a sunspot.
The thick horizontal line represents the τ = 1 layer, or the visible surface of the Sun,
showing theWilson depression within the sunspot. From Parker (1979).

If ρi and ρe decrease, the pressures pi and pe decrease as well when Ti and Te saturate
and B2

i must decrease too, which results in and expansion of the flux with height.
According to Eq. 1.17, the maximum possible magnetic pressure inside of the

flux tube can be equal to the external pressure. However, themagnetic pressure due
to a sunspotwith amagnetic field of 3000G is 2.4×104Nm−2, while the photospheric
pressure is of 1.4 × 104 N m−2, so that the condition set before is not fulfilled. The
explanation for this is in the Wilson depression. Within sunspots, the magnetic
field of the umbra is measured at a depth of hundreds of kilometers below the quiet
Sun, where the ambient plasma pressure is higher. Additionally, with increasing
height the ambient plasma pressure decreases, resulting in the magnetic field lines
spreading out (Fig. 1.6), and therefore a decrease in themagnetic field strength. This
decrease in themagnetic field strengthwith heightmeans that the pressure gradient
of the sunspot exceeds the external pressure value (Eq. 1.17), so that Ti < Te (Eq. 1.18).
The opacity depends strongly on the temperature, so that at lower temperatures
the opacity is reduced (Solanki, 2003), and one can see deeper into the Sun. This
depressed τ = 1 level is theWilson depression.

There are many pressure balance models for sunspots,(e.g. Spruit, 1976; Meyer
et al., 1977; Parker, 1979; Schmidt, 1991). However, these models estimate sunspots
to be very shallow phenomena (Thomas & Weiss, 1992). These simple models are
useful near the bottom photosphere, where the magnetic field can be assumed to
be homogeneous and cylindrical and don’t consider the curvature of the magnetic
field lines expanding with height.

A more accurate approach (e.g. Prokakis, 1974; Maltby, 1977; Solanki, 2003; Löp-
tien et al., 2018) considers again the radial force balance but now includes the hori-
zontal magnetic fieldBR(R, z). Themagnetohydrostatic equilibrium is again given
by Eq. 1.16, and the magnetic field is now assumed to be a cylindrically symmetric,
and untwisted (Fig. 1.6), but now the radial component is not zero. Then The force
balance components are

− ∂p
∂R
+ Bz

µ
(∂BR

∂z
− ∂Bz

∂R
) = 0, and − ∂p

∂z
+ BR

µ
(∂BR

∂z
− ∂Bz

∂R
) − ρg = 0, (1.19)

in radial and vertical direction, respectively. At the center of the sunspot, the vertical
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component of Eq. 1.19 is simplified to ∂p/∂z = −ρg, and the radial force balance in
can be re-written as

∂p

∂R
= Bz

µ
(∂BR

∂z
− ∂Bz

∂R
) . (1.20)

Integrating radially the prior equation from the center of the sunspot (at R = Ri) to
a point in the quiet Sun (R = Re) gives

p(Re) − p(Ri) =
1

2µ
B2

z(R) +
1

µ ∫
Re

Ri

Bz
∂BR

∂z
dR = 1

2µ
B2

z(R) +
Fc

2µ
, (1.21)

where Fc is the curvature integral

Fc = 2∫
Re

Ri

Bz(R′)
∂BR(R′)

∂z
dR′, (1.22)

symbolizing the radially integrated curvature forces (Solanki, 2003).
As seen in the pure pressure balance models, if there are no curvature forces,

the gas pressure is still in balance with the magnetic pressure if the magnetic field
is straight vertically, as in Eq. 1.17. Considering only the pressure balance explains
a decrease in temperature and brightness due to the strong magnetic field within
sunspots, which leads to a reduced gas pressure, and therefore a decrease of the
density and the opacity, resulting in a depression of a given τ layer in the solar sur-
face. However, Fc must also be considered, since it plays a role in the force balance
as important as the gas pressure does (Solanki, 2003).

Considering the pressure balance models, where the curvature force is assumed
to be zero, the magnetic pressure is underestimated when only usingBz , and there-
fore the Wilson depression estimate is as well underestimated. This suggests that
the role of FC in determining theWilson depression of a sunspot is important (Löp-
tien et al., 2018). Assuming hydrostatic equilibrium, the magnetic pressure in the
umbra can be directly derived from observations. However, the curvature force at
the log τ = 0 layer can be estimated only in an indirect way (Löptien et al., 2020).
A detailed study on how to estimate Fc and its dependance with different sunspot
parameters, such as themagnetic field strength or the sunspot size is presented and
discussed in Löptien et al. (2020).

Quantifying theWilson depression sets constraints on the configuration of the
magnetic field within in strength and geometry, making this quantity a relevant
problem for stereoscopy.

The Wilson depression has been previously estimated with different methods
and approaches. Early quantitative approximations of the depth of the Wilson De-
pression were based on how the relative sizes of the umbra and penumbra change,
parallel and transverse to the solar disk’s radial direction, as the sunspots approach
the solar limb (Prokakis, 1974; Gokhale & Zwaan, 1972).

From 131 spot observations, Prokakis (1974) obtained depth values in the range
between 690 to 2100 km and found typically deeper depressions within larger sun-
spots. The geometrical altitude of τ = 1, however, depends on the viewing angle.
Therefore different altitude surfaces are detected during the passage of the sunspot
through the solar disk (Solanki et al., 1993), being a disadvantage for the method of
Prokakis (1974), despite it being a direct method to quantify theWilson depression.
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Furthermore, sunspots evolve as well while they move from the disk center to the
limb, and the relative sizes of umbra to penumbramay change due to this evolution.

Beyond the observational method described above, attempts to estimate the
Wilson depression using indirect methods have been made. Martínez Pillet and
Vázquez (1993) studied the distribution of continuum intensity and the increase
in magnetic pressure within the umbra of several sunspots. Under the assump-
tion that the horizontal forces across the sunspot are balanced and that the tension
forces are of the same order of magnitude as the magnetic pressure, they obtain
typical depths in sunspots of about 600 km, averaged over all the local depressions
of all points throughout the umbra.

A linear relation between the gas temperature and the vertical magnetic field
was obtained by studying the infrared emission through one sunspot. According to
a quantitative model of the magnetic and thermal force balance, Solanki et al. (1993)
found an average Wilson depression of about 400 km in the studied sunspot, even
though the depth varies as a function within the sunspot, with a qualitative radial
dependence, which agrees with what was found byWilson and Cannon (1968) when
studying the Wilson effect. However, the results of methods using quantitative es-
timates of the curvature force, e.g. from Solanki et al. (1993) and Martínez Pillet and
Vázquez (1993) have some uncertainty, since the curvature force estimates are as well
uncertain.

Puschmann et al. (2010) inverted spectropolarimetric observations of small pat-
ches in the penumbra and then fitted to a 3D MHDmodel of the solar atmosphere
above them. It was found that the surface of the penumbra declined around 300 km
over a horizontal extension of 4Mm in this regions.

An extension of the work of Puschmann et al. (2010) onto an entire sunspot was
conducted by Löptien et al. (2020). As constraints for fitting the observations they
used a vanishing magnetic field divergence and a magnetic force in balance with
the gas pressure. Under these two constraints, for a modelled sunspot they found a
depression of the umbra of 500 and 700 km.

There is still a considerably large uncertainty in the Wilson depression’s depth
estimates, which arises from uncertainties in the applied estimation techniques.

It has been found that generally the larger sunspots tend to have stronger mag-
netic fields and lower umbra temperatures (see, e.g., Kopp & Rabin, 1992; Schad,
2014;Watson et al., 2014; Rezaei et al., 2015). This relation suggests that a dependence
of the sunspots’ depth with its size may also exist. This has already been shown in
the results of (Löptien et al., 2020), but this relation is still not well known, due to
the uncertainties in the current depth estimates.

In this work a new method to estimate the depth on sunspots, based on direct
observations and stereoscopic analysis is proposed.

1.2 Stereoscopy

Computer vision aims to study properties of digital images which represent a three
dimensional world. As the name suggests, computers are used to interpret images
to retrieve geometric or dynamic information about the objects in them. There are
many different algorithms and tools for computer vision, stereoscopy being one of
them.
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Stereoscopy is understood as an image analysis by which 3-dimensional infor-
mation is retrieved from two or more images by identifying a feature from two dif-
ferent vantage points and using their image position to reconstruct their relative
3D position. Stereoscopy includes a wide range of techniques and applications in
different fields of technology and science, going from microscopy to star parallax
measurements.

A prerequisite of stereoscopy is to identify corresponding features between im-
ages. Stereoscopy is a promising tool to retrieve 3D information if the images have
clear identifiable features and if the calibration between the cameras is correct. In
stereoscopy, the term calibration refers to the determination of the camera resolu-
tion, position, attitude and view direction.

Two key problems to be solved when performing a stereoscopic analysis are the
correspondence problem and the reconstruction problem. A correspondence is the
relationship established between the two projections of one object in the two stereo-
scopic images (Inhester, 2006). Generally, the approaches to find correspondences
between images are based on correlationmethods or feature basedmethods (Trucco
& Verri, 1998). While clear identifiable features allow the feature based methods to
be used, due to the nature of the structures studied here, the analysis performed in
this work requires a statistical correlation-based approach.

Once the correspondence of features between images has been found, the 3D
reconstruction can be performed. This requires additional spatial and geometrical
information. It is convenient to transform the problem from three-dimensions to
a set of two-dimensional problems by finding an adequate coordinate system for
the problem (Inhester, 2006). One suitable set of coordinate systems is based on
epipolar planes.

Given a set of two images of the same scene, the plane connecting a feature in
that scene with each of the observing cameras A and B is the epipolar plane. On
this plane lies a line that connects both cameras, say rAB . A feature in the observed
scene is projected onto each of the images. The viewing line from that observer to
the feature appears in the image of this observer as a point and in the image of the
other observer as a straight line, the epipolar line of that feature. The point along
the rAB line on which all epipolar lines of one image connect is called the epipole
of that image. A representation of epipolar planes and epipolar lines is displayed
in Fig. 1.12 in Section 1.2.2, where these topics are discussed in more detail.

The difference in position of corresponding features between images along cor-
responding epipolar lines, is called disparity. If the spatial configuration and epipo-
lar geometry of the system, comprised of both cameras and the observed object, as
well as the disparity are known, then the 3D information of the image can be re-
trieved. Therefore, the geometric configuration of the system, the camera parame-
ters and a set of algorithms are required to perform stereoscopy.

In this chapter the equations of stereoscopy (see Trucco&Verri, 1998) needed for
stereoscopic analysis will be reformulated so they can be used for solar stereoscopic
observations. Most of these observations are formatted as FITS files (see Greisen &
Calabretta, 2002; Thompson, 2006). The reformulation made in this work is tuned
to use specifically the metadata of these files.
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1.2.1 Camera Model and FITS Parameters
FITS, or Flexible Image Transport System, is the standard format for data used in
astronomy. It is used for transport and analysis of scientific data sets. FITS files
can containmulti-dimensional arrays, images and headers, which contain keywords
that describe the contained data. These header keywords are key for stereoscopic
analysis since they contain information about camera parameters, and scientific
coordinate systems, that describe the location of each pixel in an image, but also in
a world coordinate system (Wells & Greisen, 1979; Ponz et al., 1994). The relevant
FITS header keywords, besides from the 3D spacecraft coordinates, are displayed in
table 1.1. These are the quantities needed for the stereoscopic analysis presented
here.

Computer visionmethods require to link the coordinates of points in a 3Dworld
system to their corresponding points in image coordinates. For this it is assumed
that the camera reference frame can be located with respect to some other reference
frame; and that the coordinates of the image points in the camera’s reference frame
can be derived from the pixel coordinates, which are the only ones directly available
from the image (Trucco & Verri, 1998). Knowing this camera characteristics, or pa-
rameters, helps to build a camera model in order to be able to link features from an
image to the 3D world and vice versa.

Keyword [units] Description
CRPIX1 [pixel] Position of reference pixel along x-axis
CRPIX2 [pixel] Position of reference pixel along y-axis
CDELT1 [arcsec/pixel] image scale along x-axis
CDELT2 [arcsec/pixel] image scale along y-axis
CRVAL1 [arcsec] Coordinates of reference pixel along x-axis
CRVAL2 [arcsec] Coordinates of reference pixel along y-axis
CROTA [deg] Image rotation angle with respect to the

projected solar axis

Table 1.1: Description of the FITS header keywords needed for the streoscopic
method presented in this work.

Intrinsic Camera Parameters

For the stereoscopic analysis of solar images, a pinhole or perspective projection
camera system is a valid model since the object that cameras designed for solar
observations look at is at a much larger distance than the camera or telescope’s fo-
cal length, f . It is assumed that the images are undistorted and that therefore the
projection from the 3D world onto the camera’s focal plane has a pinhole camera
perspective.

In this pinhole perspective system, the pixel coordinates (px, py) of a feature on
an image and the viewing tangents of the angles φx, φy of this feature in the image
a with respect to the camera’s optical axis are related by (see Fig. 1.8)

(tx
ty
) = (tanφx

tanφy
) = (px − CRPIX1

py − CRPIX2
)
∆pix

f
(1.23)
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[(px, py) in pixels, (tx, ty) dimensionless]

where∆pix is the physical size of the image pixels, which is assumed to be the same
in the px and py coordinates, and f the focal length. The FITS header keywords
CRPIX1 and CRPIX2 correspond to pixel coordinates of the optical axis in the FITS
images. An image can then be constructed as in Fig. 1.8 on a virtual plane which
is normal to the camera’s optical axis and at a distance f away from the camera’s
center.

Figure 1.8: Illustration of the pinhole camera geometry with perspective projection
as in Eq. 1.23

Since the angles φx, φy are very small, the tangent function in Eq. 1.23 can be
replaced by the identity function, and the view angle converted from radians to
arc seconds by using the constant 1 rad = 180

π ⋅ 3600′′ = 648000′′/π

(φx

φy
) ≃ (px − CRPIX1

py − CRPIX2
)
∆pix

f

648000′′

π
= ((px − CRPIX1) CDELT1(py − CRPIX2) CDELT2

) (1.24)

[(px, py) in pixels, (φx, φy) in arc seconds]

The FITS header values for the camera’s plate scale are CDELT1 and CDELT2, re-
spectively. The plate scale of a camera relates the angular separation of an object
with the linear separation on its virtual image at the focal plane of the camera. Two
values are given because detector chips might not have square pixels, so∆pix might
be different for the image x and y axes. In this work square pixels are assumed.

A 2D vector of the viewing tangents from the image pixel coordinates is obtained
by

(tx
ty
) = ((px − CRPIX1) CDELT1(py − CRPIX2) CDELT2

) π

648000′′
[dimensionless]. (1.25)

The two pixel coordinates can be extended by a third scaling coordinate, giv-
ing a homogeneous coordinate vector. Using a homogeneous coordinate vector is
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customary and also helpful for the analysis of perspective projection. A specific ho-
mogeneous vector obtained from calculations, can be transformed to a normal form
by dividing it by its last element. The resulting other elements then represent the
physically relevant coordinates. By using homogeneous coordinates, (1.25) can be
rewritten as a plain matrix multiplication

⎛
⎜
⎝

tx
ty
1

⎞
⎟
⎠
∝K

⎛
⎜
⎝

px
py
1

⎞
⎟
⎠
, K = π

648000′′
⎛
⎜
⎝

CDELT1 0 −CRPIX1 ⋅ CDELT1
0 CDELT2 −CRPIX2 ⋅ CDELT2
0 0 648000′′

π

⎞
⎟
⎠
. (1.26)

The∝ sign in Eq. 1.26 implies the transformation of the vector on the right-hand
side to normal form, i.e. the multiplication with an adequate scale factor, before the
left hand side is obtained. The matrixK combines all intrinsic camera parameters.
Its inverse is also needed

K−1 =
⎛
⎜
⎝

648000′′

π CDELT1−1 0 CRPIX1

0 648000′′

π CDELT2−1 CRPIX2

0 0 1

⎞
⎟
⎠

(1.27)

The coordinates (tx, ty) of the view direction tangents with the optical axis are also
called normalized coordinates (Hartley & Zisserman, 2004). The normalized coor-
dinates will be often used as synonyms for pixel coordinates in this text, since the
relation to the real pixel coordinates is always as given in Eq. 1.26.

Since t = (tx, ty) is a vector on the retinal plane (see Fig. 1.8), its homogeneous
version (tx, ty,1) is a three dimensional vector along the view direction. Its angle
with the optical axis is

φ = arccos [

⎛
⎜
⎝

tx
ty
1

⎞
⎟
⎠

T
⎛
⎜
⎝

0
0
1

⎞
⎟
⎠

√
1 + t2x + t2y

] = arccos 1√
1 + t2

= arctan ∣∣t∣∣. (1.28)

Using the tangents of the angles is simpler than using the angles themselves. How-
ever, the angle between two arbitrary view directions (t1x, t1y) and (t2x, t2y) gives a
more involved formula, which can be cast into a form equivalent to (1.28)

φ = arccos [

⎛
⎜
⎝

t1x
t1y
1

⎞
⎟
⎠

T
⎛
⎜
⎝

t2x
t2y
1

⎞
⎟
⎠

√
1 + t21x + t21y

√
1 + t22x + t22y

] = arccos 1 + tT1 t2√
(1 + t21)(1 + t22)

= arctan [(1 + t
2
1)(1 + t22)

(1 + tT1 t2)2
− 1]1/2 = arctan ((1 + t

2
1)(1 + t22) − (1 + tT1 t2)2)1/2

1 + tT1 t2

= arctan (∣∣t1 − t2∣∣
2 + t21t22 − (tT1 t2)2)1/2
1 + tT1 t2

= arctan ∣∣t1 − t2∣∣2 +O(t4) (1.29)

for small magnitudes of t . In general, the optical axis is therefore a particular
direction and the angles and distances in the retinal plane are not equivalent unless
the angles are small. The symbol T denotes the transposition of a vector, so that
()T() refers to the inner product of two vectors, and is used throughout this work.
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Extrinsic Camera Parameters

Given a set of normalized 2D pixel coordinates in an image, linking them to the 3D
world requires knowing the 3D position of the camera, rSC, and its attitude defined
by an orthogonal 3D axis system (êx, êy, êz). The subscript SC corresponding to
spacecraft, will be used to refer to the cameras, since for this stereoscopic analysis
the two used cameras will be on board spacecraft. Here, êx and êy are 3D directions
aligned with the horizontal and vertical edges of the detector chip and êz is normal
to the detector plane. For standard detectors êz should agree with the optical axis
of the telescope. Therefore the view direction associated with a pixel coordinate is
(see Fig. 1.8)

v(tx, ty)∝ txêx + tyêy + êz = R̂(
tx
ty
) + êz =R

⎛
⎜
⎝

tx
ty
1

⎞
⎟
⎠

(1.30)

R̂ = [êx, êy], R = [êx, êy, êz]

and any object seen in this pixel must lie on the line rSC + αv where the distance
α > 0 is unknown. The 3×2matrix R̂ has the the unit vectors êx, êy as columns and
its extension toR is required for homogeneous coordinates.

While the intrinsic camera parameters are listed directly in the FITS header of
the images, the extrinsic parameters are not. The spacecraft position rSC is given in
the FITS header for some 3D coordinate systems. As long as all 3D vectors are noted
in the same coordinate system, it does not matter which one is used, but due to the
nature of the problem it is very convenient if a heliocentric 3D coordinate system is
chosen so that r = 0 for the solar center. It is also convenient to choose a coordinate
system in which its third axis is aligned to the solar rotation axis, Ω = (0,0,1)T. In
this work we will use the Heliocentric Earth Equatorial coordinate system (HEEQ),
for which the first axis is directed to the projection of Earth onto the heliographic
equator (see Thompson, 2006). The FITS header keywords for the 3D components
of rSC are HEQX_OBS, HEQY_OBS, HEQZ_OBS in units of meters.

The columns of the matrix R are not given in the header, so they must be con-
structed from the observation of the Sun center r = 0 and the direction of the pro-
jected solar rotation axis in the image.

The image vector from the Sun center to the optical axis is given in the FITS
header as CRVAL1, CRVAL2 in arc seconds, therefore

t⊙ = (
tx⊙
ty⊙
) = − −π

684000′′
(CRVAL1
CRVAL2

) (1.31)

are the normalized pixel coordinates of the solar center in the image. In order to
define the view ray vector v in Eq. 1.30 uniquely and for it to have a dimension of
length we multiply it with the distance d⊙

v(tx, ty) = d⊙[R̂(
tx
ty
) + êz] = d⊙R

⎛
⎜
⎝

tx
ty
1

⎞
⎟
⎠
, (1.32)

which will be determined as follows. A general point r projects to a pixel (tx, ty)
with a well defined distance parameter α

r(tx, ty, α) = rSC + αv(tx, ty). (1.33)
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By demanding that the view ray to the Sun center has the parameter α = 1, d⊙
and α are uniquely defined so that

r(tx⊙, ty⊙,1) = rSC + d⊙[R̂(
tx⊙
ty⊙
) + êz] = 0. (1.34)

r(tx⊙, ty⊙,1) points to the origin of the 3D coordinate system. Comparing the mag-
nitudes of both sides of Eq. 1.34 yields

d⊙ =
∣∣rSC∣∣√
1 + t2⊙

. (1.35)

Now the correct axes inR have to be obtained. The information provided by the
FITS header is indirect: it contains only the the pixel position of the Sun center and
a roll angle around the optical axis that is provided in the form of a symmetric 2x2
image rotation matrix P given by its elements P11 = P22 = cosω and P21 = −P12 =
sinω. This matrix rotates all pixels (tx, ty) from the optical axis by an angle ω so that
the rotation axis Ω of the Sun is seen parallel to the image y-axis:

(t
′
x⊙
t′y⊙
) = P(ω)(tx⊙

ty⊙
) = (cosω − sinω

sinω cosω
)(tx⊙

ty⊙
) .

The ω is the angle of the projected solar rotation axis with the image êy axis. There-
fore ifP is applied to a pixel proportional to (Ωx,Ωy) on the projected solar rotation
axis, it will be rotated parallel to the vertical image edge,

(Ω
′
x

Ω′y
) = P(ω)(Ωx

Ωy
) = (0

1
) , so (Ωx

Ωy
)∝ (sinω

cosω
) .

The matrix P is equivalent to the roll angle ω, which together with the Sun center
pixel coordinates t⊙ and the direction rSC/∣∣rSC∣∣ of the spacecraft position provides
the three parameters needed to determineR in the HEEQ coordinate system.

We use Eq. 1.34 for that purpose and solve for the 3D axis system R by iteration
until Eq. 1.34 is satisfied and the projection of Ω into the image plane is parallel to
ê
(n)
y . The final x, y-axes are then rotated byPT so thatΩmakes an angle ω with the
image y-axis.

initiate n = 0, (t
′
x⊙
t′y⊙
) = P(ω)(tx⊙

ty⊙
) , ê

(0)
z = −

rSC
∣∣rSC∣∣

iterate n = n + 1, ê
(n)
x = ê

(n−1)
z ×Ω
∣ê(n−1)z ×Ω∣

, ê
(n)
y = ê(n)x × ê(n−1)z , (orthogonality)

ê
(n)
z = −rSC

d⊙
− (ê(n)x , ê

(n)
y ) (

t′x⊙
t′y⊙
) (intersection with Sun center)

ê
(n)
z = ê

(n)
z

∣∣ê(n)z ∣∣
, (normalization)

after convergence R̂ = [ê(n)x , ê
(n)
y ]P(ω), R = [R̂ ∣ ê(n)z ]

The iteration converges in a few steps. The first line in the iteration ensures orthog-
onality and also makes sure that the solar rotation axis lies in the êy, êz plane. All
the camera’s extrinsic parameters except rSC are now contained in R̂.
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Relation from a pixel to a view ray

The relation from a pixel to a point r on the image ray combines intrinsic and
extrinsic parameters. From (1.33)

r(tx, ty, α) = rSC + αd⊙R
⎛
⎜
⎝

tx
ty
1

⎞
⎟
⎠
= rSC + αd⊙RK

⎛
⎜
⎝

px
py
1

⎞
⎟
⎠
. (1.36)

In reverse direction, any point along the same ray will map to the same pixel and
the correspondingmapping should be independent of the distance αd⊙. This is the
advantage of using homogeneous coordinates.

Given thatR is orthogonal
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∝RT(r − rSC), (1.37)

where the factor αd⊙ is absorbed by the proportionality for homogeneous image co-
ordinates as explained above in Section 1.2.1. Any point along the view ray is equiv-
alent so we can simply choose a point at a distance αd⊙ = 1.

As well as for the view ray, we also want to introduce homogeneous coordinates
for the 3D vector r. The step is similar to the step which led from (1.25) to (1.26):

⎛
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tx
ty
1

⎞
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⎠
∝ [RT ∣ −RTrSC] (

r
1
) . (1.38)

Therefore mapping a 3D world point to true image pixel coordinates is given by
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) , P =K−1[RT ∣ −RTrSC]. (1.39)

The 3 × 4matrix P is the perspective projection matrix (PPM).
Without homogeneous coordinates, the calculation equivalent to (1.38) and (1.39)

is
(tx
ty
) = (ê

T
x

êTy
) r − rSC
êTz (r − rSC)

, (px
py
) = (CRPIX1

CRPIX2
) + K̂−1 (tx

ty
) (1.40)

where K̂−1 is the upper left 2 × 2 submatrix of K−1 in (1.27).

Intersection of a view ray with the solar surface

Anypoint on the solar surface can be characterised by its 3D position and its distance
from the solar center, rsrf = rsrf r̂. For the distance we write rsrf = R⊙ + dh(r̂), where
R⊙ is the standard solar radius. All the surface height variations are in the direction
dh(r̂) where the unit vector r̂ defines the coordinates on the solar surface. When
using the HEEQ coordinate system, r̂ can be expressed in Stonyhurst longitude Φ
and latitude Θ:

r̂ =
⎛
⎜
⎝

cosΘsinΦ
cosΘcosΦ

sinΘ

⎞
⎟
⎠
.
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Mapping the surface coordinates r̂ to pixels (tx, ty) is straight forward using, for
example, Eq. 1.40 and inserting r = (R⊙ + dh(r̂))r̂ on the right hand side.

(tx
ty
) = (ê

T
x

êTy
) (href + dh(r̂))r̂ − rSC
êTz ((href + dh(r̂))r̂ − rSC)

.

The reverse map from (tx, ty) to r̂ or equivalently to αsrf can only be written
down implicitly. Starting from (1.33), and demanding that the length of r has the
correct distance from the solar center ∣∣r∣∣ = rsrf = R⊙ + dh(r̂), or

∣∣rSC + αsrfv(tx, ty)∣∣2 = r2srf . (1.41)

Now, only the correct distance parameterαsrf has to be found. Requirement (1.41)
gives

r2srf = r2SC + 2αsrfr
T
SCv(tx, ty) + α2

srf ∣∣v(tx, ty)∣∣2 or

0 =
r2SC − r2srf
∣∣v(tx, ty)∣∣2

+ 2αsrf

rTSCv(tx, ty)
∣∣v(tx, ty)∣∣2

+ α2
srf or

αsrf = −b ±
√
b2 − c, (1.42)

where the coefficients can be calculated using (1.32), (1.35) and (1.34). Since R is or-
thogonal,
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so that b =
rTSCv(tx, ty)
∣∣v(tx, ty)∣∣2

= −1 + t
T⊙t

1 + t2
,

and c =
r2SC − r2srf
∣∣v(tx, ty)∣∣2

= (1 − ( rsrf
rSC
)
2

) 1 + t
2⊙

1 + t2
.

Here, r2SC > r2srf because the spacecraft is outside of the Sun and therefore we always
have c > 0, b < 0 and αsrf > 0. The two signs in the solution (1.42) denote the two
possible intersections of the ray with the solar surface sphere. The lower sign (with
the smaller value αsrf ) gives the visible intersection on the front side, the upper sign
the intersection on the back side of the Sun. If b2 < c, the pixel lies outside the solar
disk.

Stereoscopic case: Intersection of two rays

In the previous sections, the parameters where considered for a single camera, or
spacecraft. Now two observers, or cameras, are considered. The corresponding vari-
ables are marked by subscripts A and B, so that he spacecraft positions are rSC,A and
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Figure 1.9: Illustration of two beams which do not intersect. The solution (1.47)
yields the points on each beam with the least mutual distance δ ∣∣vA × vB ∣∣.

rSC,B , as well as the normalized pixel coordinates in images A and B are (tAx, tAy)
and (tBx, tBy), respectively. Therefore from (1.33), the 3D intersection of the of two
rays must satisfy

risect = rSC,A + αAvA(tAx, tAy) = rSC,B + αBvB(tBx, tBy), (1.45)

and the distance parameters αA and αB of the intersection need to be found. From
now on, the pixel arguments (tAx, tAy) and (tBx, tBy) of the view directions vA and
vB , respectively, will be omitted to have a more concise notation.

Substracting the two right hand sides of 1.45 gives

rSC,A − rSC,B = dBAS = (vB,−vA)(
αB

αA
) =V(αB

αA
) . (1.46)

The distance vector rSC,A − rSC,B is called the stereo base dBAS and V is a 3 × 2
matrix with columns vB and −vA.

The system (1.46) is overdetermined, so that it only has a solution if the pixel
coordinates (tAx, tAy) and (tBx, tBy) are chosen such that the two view rays properly
intersect. This is equivalent to placing them on a corresponding pair of epipolar
lines in each image, which will be shown later.

If the two view rays do not intersect, the minimum square error solution can be
obtained using the pseudoinverse of V:

(αB

αA
) = (VTV)−1VTdBAS (1.47)

The two view rays rSC,A + αAvA and rSC,B + αBvB in this case may not be inter-
secting, but do have the smallest possible distance. We can calculate the distance
between the two solutions and decide whether it is small enough to be acceptable
(see Fig. 1.9).

1.2.2 Epipolar Geometry
The stereoscopic analysis performed in this work is based on epipolar geometry.
Therefore it is key to give a detailed introduction on the epipolar geometry approach
to mathematically explain the basic concepts of epipolar geometry described at the
beginning of this chapter.

A more systematic approach to solving the stereo problem is by transforming
the problem to an orthogonal system adapted to the particular viewing geometry of
the problem, defined solely by the position of the two spacecraft and an arbitrary
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object or point at r. Different r may give different epipolar planes, each forming a
new orthogonal system. Among these, the plane through the solar center will serve
as a base plane and is therefore labeled as 0. The orthogonal stereo system is defined
by

êBAS =
rSC,A − rSC,B

dBAS

, dBAS = ∣∣rSC,A − rSC,B ∣∣ (stereo base), (1.48)

êPOL(0) =
rSC,B × rSC,A

d2POL

, d2POL = ∣∣rSC,B × rSC,A∣∣ (mission plane normal), (1.49)

êRAD(0) = êBAS × êPOL(0) (vector from origin to stereo base).
(1.50)

The mission plane is the plane containing both spacecraft and r. The meaning of
êBAS and êPOL(0) is obvious, and êRAD(0) is directed from the origin of the system
to the point rAB along the stereo base line closest to the origin (see Fig. 1.10).

The distance of rAB to the system origin can be found with

∣∣rAB∣∣ = êRAD(0)TrSC,A =
rTSC,A(rSC,A − rSC,B) × êPOL(0)

dBAS

=
(rSC,A × (rSC,A − rSC,B))TêPOL(0)

dBAS

=
d2POL

dBAS

. (1.51)

The same result is obtained for êRAD(0)TrSC,B .
The other epipolar planes in the same system do not include the solar center.

Instead, we define an origin on such a plane in the point on the plane which is
closest to the Sun center. These planes will be labeled by their distance ζ from the
solar center. For one stereo system, all the epipolar planes contain the stereo base

Figure 1.10: Two orthogonal epipolar coordinate systems for two observing space-
craft at rSC,A. In blue, the epipolar plane for ζ = 0 with the solar center as the origin.
In black an inclined epipolar plane with planar coordinate system that has its origin
at the distance ζ from the Sun center is displayed.
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Figure 1.11: Illustration of the triangle in (1.54) in the plane orthogonal to the epipo-
lar plane to find the relation between ζ and ε. The epipolar plane here corresponds
to the line along êRAD(ζ). The distance from rAB to the origin of the epipolar plane
ζ is d = ∣∣rAB ∣∣ cos ε.

line (1.48) and therefore have the same êBAS. The plane normal êPOL(ζ) and the
third orthogonal êRAD(ζ) are rotated with respect to (1.49) and (1.50) by an angle ε
(see Fig. 1.10).

The sign of ζ is defined as the sign of êPOL(ζ)TêRAD(0). Any epipolar plane ζ
has an inclination ε with respect to the plane ζ = 0. Any point on the epipolar plane
is given by the parameters α, β and

r = ζêPOL(ζ) + αêRAD(ζ) + βêBAS(0),

where

ζêPOL(ζ) is the origin on the plane
êPOL(ζ) = êPOL(0) cos ε + êRAD(0) sin ε (1.52)
êRAD(ζ) = êRAD(0) cos ε − êPOL(0) sin ε = êBAS × êPOL(ζ) (1.53)

The points ζêPOL(ζ), rAB on the stereo base line and the Sun center form a right-
angled triangle (see Fig. 1.11) so that

ζêPOL(ζ) + dêRAD(ζ) = ∣∣rAB∣∣êRAD(0). (1.54)

Here, d is the distance of the new origin ζêPOL(ζ) to the stereo base line located at
∣∣rAB∣∣êRAD(0). Multiplying Eq. 1.54 with êPOL(ζ) gives a relation between ζ and ε
for each epipolar plane.

ζ = ∣∣rAB∣∣êPOL(ζ)TêRAD(0) = ∣∣rAB∣∣ sin (1.55)

with ∣∣rAB∣∣ from (1.51), which can also be seen in Fig. 1.11.

Spacecraft Coordinates in Epipolar Geometry

Since the base vectors (1.48), (1.52) and (1.53) are orthogonal, it is straightforward to
decompose the spacecraft coordinates with respect to them, recalling that ∣∣rAB∣∣ is
the distance to the stereo base line (1.51).

rSC,A = bAêBAS + ∣∣rAB∣∣êRAD(0), rSC,B = bBêBAS + ∣∣rAB∣∣êRAD(0). (1.56)
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epipolar
linesepipole

of image B

Figure 1.12: Illustration of rectification. rscA and rscB are the spacecraft positions,
the black frames represent their respective retinal planes. After rectification, the
frames are rotated (light blue) so that they have the same extrinsic matrixR′.

The coefficients bA and bB can be calculated inserting the base vectors:

êTBASrSC,A =
r2SC,A − rTSC,ArSC,A

dBAS

= bA, êTBASrSC,B =
rTSC,ArSC,A − r2SC,B

dBAS

= bB (1.57)

with bA − bB =
∣∣rSC,A − rSC,B ∣∣2

dBAS

= dBAS, bA + bB =
r2SC,A − r2SC,B

dBAS

.

Rectification

Rectification is a very useful tool for stereoscopic depth analysis and is key for the
stereoscopic method developed in this work. A brief description will be given in
this section, but more details on image rectification can be found in Fusiello et al.
(2000). The procedure for rectifying is to calculate the view ray for a pixel (tx, ty)
in the original extrinsic matrix frameR according to Eq. 1.32 and then to reproject
the view ray back to a new retinal image plane but in a modified extrinsic frameR′
with a rotated focal (and retinal) plane. R′ is the rectified extrinsic frame. It can be
seen in Fig. 1.12 that the goal of rectification is to move the epipole of one feature
in the images to infinity so that the epipolar lines become parallel. This is very
useful in stereoscopic depth reconstruction because corresponding pixels must lie
on the same epipolar plane. Rectification ensures that corresponding features lie
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on the same horizontal line between rectified images, so that the depth analysis is
reduced to a series of independent 1D problems of finding the correspondence in
the x direction along a pair of horizontal rows with the same y coordinate in both
images.

To achieve rectification, the new extrinsic camera frame, which is common for
the images from both spacecraft, must have its x-axis parallel to the stereo base (Eq.
1.48), the same plane normal in z and the y axis completes an orthogonal system.
In other words, the x, y and z axes correspond to the orthogonal base for one of the
epipolar planes ζ . The base plane ζ = 0 will be used here, but the base for any other
epipolar plane in the system is likewise possible. For the rectified extrinsic frame
we set

ê′x = êBAS, ê′y = êPOL(0), ê′z = −êRAD(0), R′ = [ê′x, ê′y, ê′z]. (1.58)

The image ray should not change in 3D coordinates, and therefore the trans-
formed image coordinates can be calculated using (1.32), for example for image A:

vA(tx, ty)∝R
⎛
⎜
⎝

tx
ty
1

⎞
⎟
⎠
∝R′

⎛
⎜
⎝

t′x
t′y
1

⎞
⎟
⎠

or
⎛
⎜
⎝

t′x
t′y
1

⎞
⎟
⎠
∝R′TRA

⎛
⎜
⎝

tx
ty
1

⎞
⎟
⎠
,

Similarly for image B.RA andRB are the extrinsic cameramatrices for image A and
B, respectively, andR′ is the same for the rectified camera frame.

The proportionality term ∝ compensates for the different distances dA⊙ ≠ dB⊙
of the two spacecraft. The rectified pixel coordinates t′x and t′y then have to be inter-
preted as the tangent of the view anglewith the new rectified axis direction−êRAD(0)
as seen from the cameras at the positions of the corresponding spacecraft. The rec-
tification is performed by the following linear transformation. For image A:
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⎟
⎠
, (1.59)

and equivalently for image B. The rectification requires retinal plane rotations, so
it is expected that rectifying the images causes some distortion.

Figure 1.13 shows an extreme case to explain the effect of the rectification. The
two spacecraft are separated by an angle of 175○. The top panels show the image
in normalized, not rectified, pixel coordinates, the solar disk in red, epipolar lines
in dark blue and a regular pixel grid indicated by the black crosses. The extension
of the epipolar lines towards their intersection yields the epipole of the respective
image, shown in light blue. The bottom panels show the same images after they
were rectified. The epipolar lines are now horizontal, but both the solar disk and
the original pixel grid are distorted, as well as the tangent values of the coordinates,
which are now larger in magnitude because the rectified optical axes point far off
the solar center.

1.2.3 Previous Stereoscopic Studies of the Sun
Stereoscopic techniques have been used to study solar features for many years, fo-
cusedmainly on discrete coronal features: loops, filaments and identifiable features
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Figure 1.13: The effect of rectification of the original image pair (top row) to rectified
images (bottom pair) for two spacecraft at ∣∣rSC∣∣ = 200R⊙ and longitudinal separa-
tion of 175○. For further details see text.
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of CMEs. The first solar stereoscopic attempts were applied to ground-based data
at wavelengths in the optical EUV and radio ranges. They used the solar rotation
to obtain a pair of independent images assuming that the object did not change in
between. Koutchmy and Molodenskii (1992) used two white light pictures during
the solar eclipse of 1991, observed 3 hours apart, to make a stereoscopic triangula-
tion of ray-like coronal structures. Another application used high resolution radio
images to synthesize altitude measurements at different frequencies and construct
a 3D model of the magnetic field or the plasma density (Aschwanden et al., 1992;
Aschwanden et al., 1995).

The first space-based stereoscopic studies also used the solar rotation, due to
the fact that all the space missions dedicated to study the Sun at the time (i.e. SMM,
Yohkoh, SOHO) had near Earth orbits. However, their imaging capabilities were
better in comparison to earth-bound observatories. With this rotation-based stere-
oscopy, images from the mission Skylab were used to study coronal loops (Berton
& Sakurai, 1985); images from Yohkoh were used to produce stereoscopic images of
the soft X-ray corona (Hurlburt et al., 1994) and SOHO images to reconstruct the 3D
geometry of solar prominences (Foullon, 2003) and EUV loops (Aschwanden, 2011).

Reconstruction of non stationary objects requires simultaneous observations
from at least two vantage points. Such observations, necessary for any stereoscopic
analysis of solar features, require to be coordinated. Early combined observations
of the Earth-bound Nançay radioheliograph and the probe Mars-3 measured solar
type III bursts (Caroubalos & Steinberg, 1974). Hard X-ray bursts of solar flares were
measured with multi-spacecraft observations by Kane (1981)

The first space mission dedicated to provide data for stereoscopic analysis of
the Sun was the SolarTErrestrial RElations Observatory (STEREO), which consisted
of two spacecraft. Most of the stereoscopic studies of the corona use data from
STEREO (Inhester, 2006; Aschwanden, 2011) sometimes combinedwith images from
SOHO or one observatory on Earth observing in the same spectral range. Both
spacecraft from STEREO orbit the Sun at 1 AU, but independent from each other.
They have Extreme Ultraviolet (EUV) imagers and coronagraphs to observe the Sun
and the corona. These instruments do not allow for photospheric observations be-
cause the EUV corona lies well above the photosphere and in coronagraphs the so-
lar disk is entirely occulted. Nevertheless, the Polarimetric Helioseismic Imager
(SO/PHI, see Solanki et al., 2020) on board of the Solar Orbiter (SO/PHI), launched
in 2020 (see Müller et al., 2020), can be used to observe the photosphere in white
light and high resolution. This opens the possibility to perform stereoscopic stud-
ies of photospheric features, sunspots being the most obvious; if its observations
are combined with observations from another spacecraft orbiting the Sun or with
an Earth bound telescope in the same spectral range.

Even though no attempts to study sunspots using stereoscopy have yet been
made, active regions (AR) studies using stereoscopy have been made. The 3D den-
sity and temperature distributions of active regions can be obtained with radio-
stereoscopy. But stereoscopically triangulating the altitude h(λ) of a radio source at
a given wavelength requires a parametrization of these models (Aschwanden, 2011).
A review on the 3D reconstruction, geometry and distributions of physical parame-
ters in ARs is given in Aschwanden andWülser (2011).

As it has been mentioned before, stereoscopic techniques to reconstruct surface
features like sunspots require to identify clear features, edges or marks in a pair of
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images. Photospheric images, due to their lower contrast, lack these clear features.
In order to perform a stereoscopic analysis of the altitude variations on the solar
surface a new different approach based on statistical correlations is necessary. The
motivation of this thesis is to perform a stereoscopic analysis of theWilson depres-
sion of sunspots of active regions. This is the most relevant height variation of the
solar surface at an optical depth of τ = 1.

Quantifying the height variations of the Wilson depression is relevant to bet-
ter understand the magnetic and geometric structure of sunspots. In the following
chapters of this work a new compound stereoscopic method, developed to measure
variations in the photospheric altitude, will be presented and discussed. Chapter 2
consists on a general description of the method, and the basic concepts, definitions
and assumptions are presented. In Chapter 3 the method is applied to images ob-
tained to synthetic MHD data. Some practical reformulations of the method to be
applied to these data, as well as a brief overview on the data is presented. Then the
method’s performance with the test data is presented and discussed. In Chapter 4
the method is applied to real data. The data, as well as the instruments with which
it was obtained are described. Much more practical reformulations were needed
when using real data, and they are described in this chapter. Some preliminary re-
sults and discussion of the performance of the method with real images are also
included. Chapter 5 presents a discussion on the results obtained, the advantages
and limitations of the developed method. Lastly, we present a chapter with an out-
look for the possible results to be obtained and the possible scientific goals that
could be achieved when applying the method presented here to further combined
observations.
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Chapter 2

A Method for Sunspot Stereoscopy

This chapter describes of the correlation-basedmethoddeveloped to perform stereo-
scopic analysis of the height variations of the solar surface in sunspots to estimate
their Wilson depression. The results of applying this method to synthetic test data
and real observations from two different spacecraft are presented in Chapters 3 and
4, respectively.

The basics of epipolar geometry were given in Section 1.2.2. With this basis some
additional concepts can be introduced to describe the method and the procedure to
perform a stereoscopic analysis of photospheric observations from two spacecraft.
Figure 2.1 illustrates the epipolar configuration of two spacecraft observing a region
on the Sun, and the corresponding epipolar profiles, which are the intersections of
their respective epipolar plane with the solar sphere, which we assume to be a thin
layer into which all the radiation is condensed (see Eq. 1.7). Equation 1.7 can be
considered as the definition of the height variation that we want to obtain.

Most likely, in a scene as the one described above, the epipolar lines of each
image will be oblique to heliospheric latitude circles and, mapped into an image as
epipolar lines, oblique to the horizontal image axis. The idea of rectification is to
reproject both images in order to move the epipole of each image to infinity so that
the corresponding epipolar lines become horizontal and the calculations along the
epipolar profiles are performed only in one direction.

If the rectification is performed correctly, corresponding features in both images
should appear along the same epipolar profile, however their projected position
along the epipolar profile is different for the two images. Given a feature r present
in both rectified images with coordinates (t′x,A, t′y,A) in image A, and (t′x,B, t′y,B) in
image B, the t′y coordinate is the same one in both rectified images. The difference
in the horizontal position can be measured as d = t′x,A − t′x,B , and its relation with
the distance of P to the cameras optical centers is given by (Faugeras, 1993):

d = t′x,A − t′x,B = rAB
f

z
,

where z is the distance from r to rAB , and fc the distance from rAB to the image
plane. This difference in projection of a feature in different planes is called dis-
parity and is a fundamental quantity in stereoscopic analysis, since the disparity
of corresponding features is proportional to the distance of a feature to the image
planes (Faugeras, 1993). Therefore, if the disparity between corresponding features
can be found, the distance of the feature can be estimated. If the disparity is 0, then
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1

2

Figure 2.1: Illustration of three nearby epipolar planes for spacecraft at positions
r1 and r2 and the epipolar plane intersections with the solar surface. Each of these
intersections constitutes an epipolar surface profile onwhich our stereoscopic anal-
ysis is independently applied.

the observed feature is at infinity or at a distance larger than what the resolution of
the images allow to distinguish.

The relation of disparity and depth above assumes that the camera geometry is
such that the two retinal planes are the same. This applies for the particular case
in which the two cameras are parallel (as displayed in Fig. 2.2), or if the images
have been rectified, given that the aim of rectification is to reproject the images so
that they are projected as if the cameras were parallel. If the cameras have arbitrary
positions the relation between pixel coordinates of corresponding points is not as
simple. However, the simple approach is intuitive and explains well the geometric
principle of stereoscopy (for more details on disparity for a general camera case see
Faugeras, 1993).

If discrete features cannot be discerned in the images an alternative is to de-
termine the disparity by correlating the image intensities along the two epipolar
profiles. This is the approach used in this work as well. It consists in shifting and
correlating windows of data around a reference point r to estimate the disparity
of r from the maximal correlation and subsequently convert the optimal shift into
a height. In this approach it is assumed that the disparity is constant within the
whole analyzed window, so that if the disparity gradient is high the method might
not be precise. A drawback of this approach is that if the correlation function does
not have a pronounced maximum, then the disparity cannot be determined very
accurately (Faugeras, 1993).

The correlation method presented here is complemented with an optimization
method. Optimization methods aim to find the best solution to a problem from all
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Figure 2.2: Parallel camera scheme. rA and rB represent the camera positions; rAB

the stereo base line connecting both cameras; cA and cB are the positions of the
optical centers in the retinal plane, and tx,A and tx,B the horizontal coordinates of
r on the retinal plane. A relation between depth and disparity is d ∝ fc/z, where
fc is the distance from RAB to the retinal plane, and z the distance from r to rAB ,
equivalent to the depth.

possible solutions. The optimization method presented in this work aims to find
a height vector to reconstruct the image intensities of both cameras in a way such
that the difference to the observed intensities at each point is as small as possible.
A general description of both methods will be presented in the following sections
of this chapter.

2.1 The Correlation Method
The stereoscopic analysis of a given feature in the solar surface seen from two differ-
ent view points requires a precise geometric calibration of the two observing cam-
eras, to set up the intrinsic and extrinsic matrices (see Chapter 1). In the method
described here the stereoscopic analysis consists in performing the calculations to
estimate the height for points along an epipolar profile. Epipolar profiles are dis-
played as image rows in the rectified images (Faugeras, 1993). Therefore the obtained
height estimates from this analysis represent the height variation along the epipo-
lar surface profiles (Fig. 2.1). In order to retrieve information from 2D Surface areas,
successive adjacent epipolar profiles must be processed.

The conditions for applying stereoscopy depend strongly on the difference be-
tween the viewing angles from the two spacecraft at the points on an epipolar profile
and their angle difference to the local surface normal. The viewing angle γ from one
of the two spacecraft is defined as the angle between the projection of the surface
normal at a given point onto the epipolar plane and the respective line of sight
from that spacecraft. The viewing angles vary along the surface profile, roughly by
1 degree per each degree in longitude on the solar surface.

To determine the height variation along a profile it is necessary to first identify



36

the point of interest r on the solar surface in both images. As it wasmentioned in the
paragraph above, the correlation approach correlates the rectified image intensities
around r. Given the nature of the observations used in this work, it is not straight-
forward to simply use the intensities in the image rows to correlate them. The sur-
face brightness observed in continuum observations of the solar photosphere are,
after rectification, converted into virtual intensity profiles (VIPs, as they will be re-
ferred to further in this work) along an epipolar profile. To determine disparity and
depth, the VIPs are shifted, windowed and correlated. The aim of the correlation
is to find the shift for which the correlation is maximized, so that this shift can be
converted into a height variation estimate around the standard solar surface.

In this chapter our approach is described in detail using the results of Chapter
1, specialized for stereoscopy on a spherical surface like that of the Sun.

The first step to estimate the height variations of a point r of interest on the
solar surface as seen by two spacecraft, is to locate its pixel coordinates (px,A, py,A)
in one of the original, not rectified images (in this case from spacecraft A). Then
the pixel coordinates (px,A, py,A) of this point must be converted into normalized
coordinates (tx,A, ty,A) using Eq. 1.25, and then the view ray vector vA to that point
from rSC,A is found using Eq. 1.41 and Eq. 1.42, as well as its intersection at r with
the solar standard sphere with ∣∣r∣∣ = R⊙ as the standard solar radius.

The three points rSC,A, rSC,B and r now uniquely determine the epipolar plane
for the epipolar profile to analyze, containing the point of interest. The parameters
ζ and ε of this plane can be obtained from Section 1.2.2.

The epipolar base vectors êPOL(ζ) and êRAD(ζ) must also be calculated. Here
êBAS(ζ) = êBAS(0), which was obtained when the images were rectified; and êRAD(ζ ,
êPOL(ζ) are rotated from the orthonormal base (ζ = 0) by an elevation angle ε for
any given ζ (see Eqs. 1.52 and 1.53).

The following sections then describe in detail the steps needed to compute the
height variations r around the solar surface: how the grid is mapped onto the im-
age, how the VIPs are produced, how the viewing angles γ are calculated along an
epipolar profile, and how the VIPs are shifted to be correlated. Once these proce-
dures have been introduced, a description of how the correlation coefficient of the
two VIPs is computed at any given shift is introduced to find the disparity of r. Fi-
nally the final computations to convert the disparity into a height variation dh are
given.

It is important to remark that the following procedure considers images from
observations of the solar surface from two cameras, or spacecraft, A and B. It is also
considered that the images have been rectified, and therefore all the camera and
epipolar parameters of the system, described in Chapter 1, have been determined,
so that the correlation has to be performed along 1D profiles for each pair of images.

2.1.1 Mapping the Surface Grid to an Image

Once ζ , ε and the epipolar base have been determined, the next step is to define
a grid along the epipolar surface profile on which the VIPs are be discretized. We
thenmap this surface grid onto the images and the observed image intensity in this
mapped grid cell is integrated to give the VIP value in this surface cell.
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Figure 2.3: View of the epipolar plane defined by êRAD(ζ) and êBAS, which has the
3D vector ζêPOL(ζ) at the origin, normal to the plane of the figure. The longitudinal
coordinate ϕ is illustrated in this figure. The circle represents the intersection of
the epipolar plane with the solar surface and has a radius ρ =

√
R2⊙ − ζ2.

For an arbitrary point r on an epipolar plane and the solar surface

r = ζêPOL(ζ) + ρ(êRAD(ζ) cosϕ + êBAS sinϕ),

R⊙ = ∣∣r∣∣, ρ =
√
R⊙ − ζ2

ϕ = −arctan[
êTRAD(ζ)(r − ζêPOL(ζ))
êTBAS(r − ζêPOL(ζ))

],

where ρ is the radius of the epipolar latitude circle of r. This circle corresponds to
the intersection of the epipolar plane ζ with the solar sphere of radius R⊙ (see Fig.
2.3). If ζ > R⊙, the epipolar plane does not intersect the solar surface.

The parameter ϕ is the longitudinal coordinate from êRAD and is defined such
that it counts positively in counterclockwise direction. By discretizing the param-
eter ϕ for the ζ-plane, a discrete surface grid that covers the vicinity of r can be
obtained. This grid has its grid centers at

ri(ϕi, ζ) = ζêPOL(ζ) + ρ(êRAD(ζ) cosϕi + êBAS sinϕi), (2.1)

with an equidistant spacing dϕ, which is one of the parameters that can be tuned for
an optimal result. The distance of the grid points along the solar surface is d` = ρdϕ.

An advantage of mapping the grid onto the rectified images is that the problem
becomes simplified in the sense that the corresponding epipolar planes appear as
horizontal profiles with the same vertical position in the images. Tomap the surface
grid to the rectified image Eq. 1.38 is used, only that now it is with the extrinsic
matrix of the rectified frame,R′ obtained from Eq. 1.58, which is the same for both
cameras.

To map the surface grid coordinate ϕi on the epipolar plane ζ , to the rectified
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Figure 2.4: View of the plane defined by êRAD(ζ) and êPOL(ζ), which is perpendic-
ular to the epipolar plane, drawn here with the line that goes from rAB to ζêPOL(ζ).
This figure displays the ζ-plane with respect to the 0-plane.

image coordinates, we combine Eqs. 1.38, 2.1 and 1.59:

⎛
⎜
⎝

t′x,i
t′y,i
1

⎞
⎟
⎠
∝ [R′T ∣ −R′TrSC] (

ri
1
) =
⎛
⎜
⎝

êTBAS

êTPOL(0)
−êTRAD(0)

⎞
⎟
⎠
(ri − rSC)

=
⎛
⎜
⎝

êTBAS

êTPOL(0)
−êTRAD(0)

⎞
⎟
⎠
(ζêPOL(ζ) + ρ(êRAD(ζ) cosϕi + êBAS sinϕi) − rSC)

=
⎛
⎜
⎝

ρ sinϕi − êTBASrSC
ζ cos ε − ρ cosϕi sin ε

−ζ sin ε − ρ cosϕi cos ε + êTRAD(0)rSC

⎞
⎟
⎠
.

From Fig. 2.4 and from Eq. 1.56, êTBASrSC = b and êTRAD(0)rSC = ∣∣rAB ∣∣ = ζ/ sin ε.
Therefore

⎛
⎜
⎝

t′x,i
t′y,i
1

⎞
⎟
⎠
∝
⎛
⎜
⎝

ρ sinϕi − b
ζ cos ε − ρ cosϕi sin ε

ζ(1/ sin ε − sin ε) − ρ cosϕi cos ε

⎞
⎟
⎠
=
⎛
⎜
⎝

ρ sinϕi − b
ζ cos ε − ρ cosϕi sin ε

ζ cos2 ε
sin ε − ρ cosϕi cos ε

⎞
⎟
⎠

or t′y,i =
ζ cos ε − ρ cosϕi sin ε

ζ cos2 ε
sin ε − ρ cosϕi cos ε

= tan ε (2.2)

t′x,i =
ρ sinϕi − b

ζ cos2 ε
sin ε − ρ cosϕi cos ε

= ρ sinϕi − b
∣∣rAB ∣∣ cos2 ε − ρ cosϕi cos ε

(2.3)

Here, b can be either bA or bB for space craft A or B according to Eq. 1.57, and ρ and
ε are both functions of ζ . The fact that t′y,i in Eq. 2.2 is independent of the index i
is a result of rectifying the image. The result for t′x,i can be geometrically explained
by Fig. 2.4. Given that the distance from rAB to the origin of the epipolar plane ζ
is ∣∣rAB ∣∣ cos ε (see Fig. 1.11), the tangents of the view direction angle to the projected
rectified optical axis

tanφA,i =
eBASv̂

eTRAD(ζ)v̂
= ρ sinϕi − b
∣∣rAB ∣∣ cos ε − ρ cosϕ

, (2.4)

for a grid point i. Finally, we project tanφA,i from the epipolar plane ζ onto the
epipolar plane ζ = 0 because it contains the optical axis of the rectified camera
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matrix. Then Eq. 2.3 is recovered by

t′x,i =
eBASv̂

eTRAD(0)v̂
= eBASv̂

cos(ε)eTRAD(ζ)v̂
=
tanφA,i

cos ε
(2.5)

The only difference in Eq. 2.3 between images A and B is due to b. Therefore
grid points for corresponding i have the same t′y in both images and their offset
in t′x is proportional to ∣bA − bB ∣ = dBAS. The disparity, or the changes in t′x due to
radius variations in ρ in Eq. 2.4 are very small in comparison to dBAS/∣ and ∣rAB ∣∣.
Therefore we need to know dBAS/∣ and ∣rAB ∣∣ very precisely to avoid any bias in our
height estimate. By mapping the grid onto the rectified images, it is only necessary
to interpolate in t′x when correlating the virtual surface images along an epipolar
profile. The t′y coordinate of the epipolar surface profile is given by Eq. 2.2. It is the
vertical coordinate in the rectified images.

Figure 2.5 illustrates a gridwithmultiple epipolar profilesmapped onto the orig-
inal images. The equivalent mapping to the rectified image is obtained if R′ is re-
placed toRA orRB in Eq. 1.58. In the example, the positions of both spacecraft with
respect to the Sun are ∣∣rSC,A∣∣ = 10R⊙ and ∣∣rSC,B ∣∣ = 20R⊙ and they are separated by
20○. Spacecraft A is 0.5 R⊙ above and spacecraft B 0.5 R⊙ below the solar equator so
that the epipolar lines are inclined. As intended, the grid in Fig. 2.6 runs along the
horizontal direction at a given vertical coordinate t′y in the rectified images, which
simplifies the problem by making each grid line 1D.

2.1.2 Virtual Intensity Profiles
The next processing step towards the stereoscopic reconstruction is to map the rec-
tified image intensity data of the two spacecraft to the VIPs on the surface grid. The
VIPs represent a brightness distribution on a virtual solar sphere with radius R⊙,
which reproduces exactly (with discretization errors) one of the image observations.
Once the VIPs have been created for an epipolar profile and for each of the images,
the correlation method can be performed.

After the grid has been mapped onto each rectified image, the virtual intensity
profiles, or VIPs, can be calculated along the profile. The grid boundaries ϕi± 1

2
are

mapped to the respective image coordinates t′x,i± 1
2
of the rectified image, as de-

scribed in the previous section, and the image intensities between the grid bound-
aries are integrated for the virtual surface brightness of grid cell i. The VIP surface
brightness Ji of each grid cell i from image A is then

SA,i =
1

ϕi+ 1
2
− ϕi− 1

2

∫
ϕ
i+ 1

2

ϕ
i− 1

2

IA(ϕ) dϕ, (2.6)

where I(ϕ) is the rectified intensity along a given epipolar profile at epipolar lon-
gitude ϕ. The VIP of ain image A is abbreviated by the vector JA = (SA,1, ... , SA,N).
This is done similarly for image B. These VIPs are calculated on a ϕ-grid from the
observed rectified images where the image t′x coordinate and the surface ϕ coordi-
nate are related by equation 2.3.

Once the two surface brightnesses are integrated into the VIPs they are then
correlated inside a symmetric window centered at ϕ for different shifts between
both VIPs to find the disparity at r, and therefore dh at this position.
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Figure 2.5: Illustration of two spacecraft at 10.8 (spacecraft A) and 21.5 R⊙ (spacecraft
B) observing the Sun, separated by 20○. Spacecraft A is 0.5 R⊙ above the solar equa-
tor and spacecraft B is one R⊙ below. The upper diagram of the figure shows the
spacecraft positions relative to the Sun’s radius as seen by an external observer. The
lower panels show the location of the surface grid in the respective spacecraft ob-
servations. The grid is equidistant parallel and perpendicular to the epipolar lines
with about 50,000 km between the grid points in both directions. The small circle
represents the reference point on the surface.
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Figure 2.6: Grid points mapped onto the rectified image for the same viewing pa-
rameters as in Fig. 2.5. The grid points for the same epipolar plane ζj have the same
y-coordinate in both images.
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2.1.3 The Correlation Coefficient

Once the VIPs have been produced, the task is to find dρ from the correlation of
the two virtual surface images. The coordinates of each point in the surface along
an epipolar profile are ξ = ρϕ. With these coordinates, the height variations dh are
now related to variations in the distance ρ from the epipolar center at ζêPOL(ζ) (see
Figs. 2.3, 2.4).

In order to find height variation estimates along an epipolar profile it is assumed
that the disparity between the projection of r in the two epipolar lines is propor-
tional to its height dh, relative to the standard solar radius. The approach used here
consists of shifting windowed intervals of the VIPs, centered around r, with respect
to each other and computing the correlation value at each shift. The shift is deter-
mined for a range of different window widths. Under this approach the correlation
will vary as a function of the shift between the VIPs at any given window width, so it
can be assumed that the shift that yields the maximum correlation is proportional
to the disparity between the VIPs and can be directly converted into a variation in
height.

Once the two VIPs have been defined, a window function on the surface grid is
defined centered around r. The window function (W) we use for the correlation
must be continuous, symmetric, with a finite support and has to decay towards its
boundaries. The window has the same resolution on the surface as the grid and the
same grid size as the VIPs. Here we consider ξ as the distance variable along the
epipolar surface profile. JA and JB are continuous along ξ, thenW =W(ξ′, ξwidth),
and:

W(ξ′, ξwidth) =W(−ξ′, ξwidth) is symmetric
W(ξ′, ξwidth) = 0 for ξ′ ≥ ξwidth., has finite support

where ξ′ is a given surface position within the window, and ξwidth is half the window
support. We use here

W =
⎧⎪⎪⎨⎪⎪⎩

1 if %ξwidth ≤ ξ′ ≤ ξwidth
1
2 (1 − cos(π

ξ′

%ξwidth
)) if 0 ≤ ξ′ ≤ %ξwidth,

where % is the tapered fraction of the window.
To estimate dh at each position along the profile, the VIPs are shifted within the

window and then the correlation is performed for each shift. We use a weighted
version of Pearson’s correlation coefficient. This requires that the VIPs are centered
and normalized to 1, so that the intensity variations occur around the 0 level and
sensitivity differences between the images are largely eliminated..

We define the weighted mean (M) of a VIP J at a given position ξ:

M(J; ξ) = ∫
ξwidth
−ξwidth J(ξ

′ + ξ)W(ξ′, ξwidth)dξ′

∫
ξwidth

−ξwidth
W(ξ′, ξwidth)dξ′

, (2.7)
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and a windowed product (P ) of the shifted VIPs JA and JB :

P(JA,JB; ξ, dξA, dξB) =
∫

ξwidth
−ξwidth JA(ξ′ + ξ + dξA)JB(ξ′ + ξ + dξB)W(ξ′, ξwidth)dξ′

∫
ξwidth
−ξwidth W(ξ

′, ξwidth)dξ′
,

(2.8)

where dξA and dξB are the shifts of the VIPs A and B, respectively. Using Eq. 2.7 a
centered vector (Jc) can be obtained by

Jc(ξ) = J(ξ) −M(J; ξ), (2.9)

and a centered and scaled vector (Jcs) by

Jcs(ξ) =
Jc(ξ)√

P(Jc,Jc; ξ,0,0)
. (2.10)

The centering and scaling above applies likewise to JA and JB . Following Eqs. 2.7 to
2.10, the Pearson coefficient (Pearson, 1895) for shifted VIPs JA,cs and JB,cs centered
at ξ can be defined using Eq. 2.8 as

CPearson(ξ, ξwidth, dξA, dξB) = P(JA,cs,JB,cs; ξ, dξA, dξB). (2.11)

The correlation coefficient of JA,cs and JB,cs for a given position ϕ = ξ/ρ is cal-
culated for a number k of shifts dϕA,k = kδϕ tanγA and dϕB,k = kδϕ tanγB , along
an epipolar profile for the VIPs A and B, respectively, where dϕ is a constant shift
step size and k = −M, . . . ,M . Once the largest correlation is found for a given k,
a second order interpolation around the maximum is calculated to find a reliable
maximum at some non-integer shift dϕA = dϕA,kmax and dϕB = dϕB,kmax.

The shift that yields themaximum correlation between JA,cs and JB,cs is consid-
ered as the local disparity between the images at r. This shift is then converted onto
the radius variations around ρ of this point, and lastly into dh. The way the shift is
converted into a height is not straightforward, but it is explained in the following
section.

This procedure considers a fixed window size ξwidth, but the correlation for one
point can be performed for varying window sizes as well, so that dh is computed for
the best combination of shift and window size.

2.1.4 Shift Between the VIPs, Viewing Angles and Surface Normals
Considering that a change from ρ into ρ+dρ for a surface point at a fixedϕ = ϕA = ϕB ,
and a shift of the surface coordinates ϕA = ϕ−dϕA and ϕB = ϕ+dϕB for the standard
distance ρ are approximately equivalent (see Fig. 2.7), then it is only necessary to
calculate the VIPs once for the standard distance ρ and correlate them for different
shifts. Once the optimal shifts in dϕA and dϕB for ρ have been found, then they can
be converted into an equivalent dρ change for ϕA = ϕB = ϕ using equation 2.3.

For spacecraft A,

ρ sin(ϕ − dϕA) − bA
∣∣rAB ∣∣ cos2 ε − ρ cos(ϕ − dϕA) cos ε

= (ρ + dρ) sin(ϕ) − bA
∣∣rAB ∣∣ cos2 ε − (ρ + dρ) cos(ϕ) cos ε

, (2.12)
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which is equivalent for B. This implies that in order to determine dρ at a given
coordinateϕ, the shifts dϕA and dϕB are not independent andmust follow a relation
when they are varied in search of the highest correlation.

To find the relation between the best angular shift and dρ we need the local
viewing angle γ between the view direction to r from each spacecraft and the local
surface normal projected into the epipolar plane. Using Eq. 2.1, the unit vector
r̂ = r/R⊙ is the radial surface normal at r, and

ρ̂ = r − ζêPOL(ζ)
ρ

= êRAD(ζ) cos(ϕ) + êBAS sin(ϕ)

is the surface normal projected in the epipolar plane.
When expressing a point by its epipolar grid coordinates, there are three relevant

directions: r̂, ρ̂ and the unit view direction

v̂ = 1√
1 + t2x + t2y

R
⎛
⎜
⎝

tx
ty
1

⎞
⎟
⎠

from a pixel (tx, ty).
The viewing angle γ is defined as the angle of the view ray v̂ to the surface point

at r with respect to the surface normal projected in the epipolar plane ρ̂. The angle
γ is then given by

sinγ = êTPOL(ζ)(ρ̂ × v̂) (2.13)

The sign of the angle is defined as in Fig. 2.7: γ is positive for a view direction
clockwise tilted with respect to ρ̂ when looking downward onto the epipolar plane
in −êTPOL(ζ) direction.

If dϕ and dρ are small compared to π/2 and ρ, respectively, then the ρ-curve in
Fig. 2.7 can be considered as a straight line and v and v′ as parallel for both A and
B. Then

dρ = ρdϕA

tanγA
= ρdϕB

tanγB
, (2.14)

so that dϕA and dϕB have to be variedwith a constant ratio dϕA/dϕB = tanγA/ tanγB .
This ratiomakes sure that the height change dh is calculated atϕ and not at a surface
coordinate displaced from ϕ.

Associated to the viewing angles is the theoretical height resolution hth at r. If
the pixel size for each camera is such that the pixel corresponds to a viewing beam of
width∆A and∆B, respectively a theoretical rhombus is formed by the intersection
of both beams. The theoretical height resolution is the height of this rhombus (see
Fig. 2.8) and is

hth =
∆B cosγA +∆A cosγB

sin(∣γA∣ + ∣γB ∣)
. (2.15)

The maximum possible geometric error along the ρ direction is ±1
2hth. The mean

error, determined by the standard deviation, is one third to one half of ±1
2hth, de-

pending on the shape of the rhombus in Fig. 2.8, i.e., on the view angles and the
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Figure 2.7: A zoom into the region around r. The view rays vA from rscA and vB from
rscB to the surface point r are shown. The direction of vA makes an angle γA with
the rectified optical axis projected into the epipolar plane ζ and with the projected
surface normal direction ρ̂ in the epipolar plane. This figure illustrates the changes
of the view rays when the surface point is slightly elevated to distance ρ + dρ. The
new rays v′A and v′B are the same which result for ρ but with an appropriate shift in
the surface coordinates by dϕA and dϕB , respectively, as displayed with the dashed
lines. ϕ counts positively in counterclockwise direction.
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Figure 2.8: Theoretical height resolution. hth is the height of the rhomboid formed
by the intersection of the beams of width∆A and∆B, at inclination angles γA and
γB , respectively, and h̄th its mean, whichmeasures the maximum geometrical error.

ratio of ∆A to ∆B. As an estimate for the geometrical mean error we will use 1
4hth.

Height variations smaller than this cannot reliably be reproduced and fluctuations
smaller than this size in our resultsmay be random artifacts. We hope, however, that
our effective height error is somewhat better than the above estimate. The optimal
shift of the intensity profiles from which the height is determined employs a sub-
pixel interpolation of the correlation function (see Sections 2.1.3 and 2.1.5, heremore
details of the height determination are described). This probably yields a height es-
timate with an error better than the geometrical uncertainty presented in Fig. 2.8
due to the intersection of only two pixel beams.

2.1.5 Computing Height Variations From the Optimal Shifts

The last step to estimate dh for r from the optimal shift of the VIPs. This optimal
shift of the window from ϕ to ϕA → ϕ −∆ϕA and ϕB → ϕ +∆ϕB is equivalent to a
change of the view rays of vA → v′A and vB → v′B (see Fig. 2.7) which corresponds to
the view rays pointing at ϕ but for an elevated radius ρ+dρ. This radius change can
be calculated by Eq. 2.12 or by Eq. 2.14.The corresponding change in height then is

dh =
√
(ρ + dρ)2 + ζ2 −R⊙ =

√
R2⊙ + 2ρdρ + dρ2 −R⊙. (2.16)

To obtain the height variations along an epipolar profile, this procedure is re-
peated throughout each cell ϕi within an epipolar profile.The analysis of successive
epipolar profiles can be performed similarly as above by varying ζ . This is equiva-
lent to just varying t′y in the rectified images.
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2.2 The Optimization Method
Additionally, an optimization procedurewas applied to extend the correlationmethod
when applied to the test data. The practical reformulations of the method to be ap-
plied to test data are presented in Chapter 3. However, a brief description of the
optimization procedure is included in this section to give an introduction of the
calculations performed later in this work.

With the correlation method, the idea is to maximize CPearson to find the dispar-
ity of r between JA and JB . As alternative to the correlation, a cost function can be
minimized by varying the height vector h used to map the image intensities onto
the surface grid. The cost function is defined such that

fcost = 1 − CPearson (2.17)
so that the idea to maximize the correlation between the VIPs is now replaced by
the attempt to minimize a suitable cost function of them. fcost is divided by the
number of surface grid cells so that the results obtained with different grid sizes
are comparable. Under this approach the task is to find a height vector h, such that
each fcost is minimized wherever the surface grid is positioned.

Under this approach the support of the windowmay cover the entire profile and
all height values h(ξ) are determined simultaneously. As opposed to the correlation
method which considered one height dh for the entire window range, the optimiza-
tion always considers a height vector. A solution is achieved by solving a non linear
optimization problem.

For thismethod a height vector determines how the image intensities from both
spacecraft are mapped onto the surface grid, therefore fcost = fcost(h) is the quantity
to be minimized. This requires the gradient of fcost with respect to the h-vector so
that h is changed iteratively so as to make fcost smaller.

A change in h causes a change in JA and JB through their mapping onto the
surface grid. To map the image intensities onto the surface grid, with the use of a
height vector, the position of a grid cell has a corresponding pixel position in the
image, which is the one integrated into that surface cell. If the height of a given sur-
face cell changes, the corresponding image position will change as well, producing
a different VIP. Figure 2.9 illustrates how a change in hi yields a different mapping
onto ξ.

If both VIPs are produced using the same height vector to map the image in-
tensities onto the surface grid, the optimal height vector would be that one that
produces two identical VIPs. This is the aim of the optimization method: to itera-
tively change h so that after each iteration both VIPs are more similar to each other
and fcost(h) is as small as possible. However, the algorithm might reach more than
one minimum, and it is therefore convenient that the initial height h(ξ) at the start
of the iterative solution of Eq. 2.17 is a good guess. For this purpose the computed
height vector obtained through the correlation is useful.

The optimization algorithm used in this work is named after Broyden, Fletcher,
Goldfarb and Shanno, or BFGS.This is a second order optimization algorithmbased
on a gradient search, which means that the algorithm makes use of the first and
second derivative of the cost function fcost at each iteration. More information on
this optimization procedure can be found in Nocedal andWright (2006).

An effect of the optimization algorithm used here, is that the final iteration of
fcost(h)might yield a h vector with irregular fluctuations in regions due to noise in
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Figure 2.9: Sketch to illustrate the effect of a change in hj on the integration ranges
in the image. If hj increases by∆h, the heights h(12(ξj−1 + ξj)) and h(12(ξj + ξj+1)) at
the grid boundaries increase by∆h/2. Consequently, the projections of the two grid
boundariesmove in the image by∆h/2 and affects the integration range of elements
Sj−1, Sj and Sj+1. If the projections of the two grid boundaries fall into the same
image pixel, Sj does not change because the contributions from both boundaries
cancel. Recall that the view angle for the example in the figure is γ < 0.

the data. These fluctuations do not result in a clear change in the mapping of the
VIPs, especially where the VIPs are almost flat. Here, fcost is sensitive to changes in
h. Therefore fcost may still be small, but with fluctuations in h that are not realistic.
To avoid too strong oscillations on the final solution, a regularization term is added
to fcost, to reduce the impact of the second derivative of h:

fcost,regularized ≃ fcost + µ∫ (
d2h

dξ
)
2

dξ. (2.18)

In the expression above, µ is the regularization parameter, which helps obtain a
solution that is balanced between sufficient fine structure, obtained by decreasing
µ, and smaller irregular fluctuations, which are suppressed by increasing µ. The
regularization term must always be positive, so that if the second derivative of h
becomes too large, its impact is to enhance fcost.
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Chapter 3

Application of the Method to Test Data∗

The method for solar stereoscopy developed for this work was applied to synthetic
MHD data of a photospheric pore in order to test the performance of the method
and understand its limitations and performance before applying it to real observa-
tions of sunspots. The way the synthetic MHD images were produced has an ideal
and simplified geometry, in which the epipolar lines are already horizontal. For
this reason both the mapping and the correlation procedures were modified to be
applied to them, and are described in this chapter.

3.1 Test Data

In order to produce the synthetic data to test the stereoscopic method, the MURaM
numerical simulation code (Vögler et al., 2005) was used to carry out 3D radiation
MHD simulations of a typical photospheric structure (for details on the simula-
tion see Riethmüller et al., 2017). The results obtained with MURaM are in good
agreement with observational data (e.g. Schüssler et al., 2003; Keller et al., 2004;
Hirzberger et al., 2010; Riethmüller et al., 2014), therefore it can be assumed the
results obtained for this particular simulation (Riethmüller et al., 2017) are close to
real observational data, so their output can be used as the test data to reconstruct
height variations in the solar surface using the method previously described.

The test data consist of a slice of small unipolar flux concentrations, namely a
photospheric pore, surrounded by small scale magnetic structures within a quiet-
Sun-like area (see figure 3.1). In this work a 812 × 812 pixels slice of the simulation,
performed over a height range of 700 km, is used. The resolution of the grid in the ξ,
y, and z coordinates of the box simulation was [41.67,41.67,15.89] km, respectively.

In order to produce synthetic observations from different viewing angles γ, a
standard procedurewithin the SPINOR radiative transfer inversion code (see Solanki,
1987; Frutiger et al., 2000) was applied to its forward calculation mode. This allows
to compute synthetic Stokes spectra around the Fe i 617.3 nm line as the Polarimetric
Helioseismic Imager on board the Solar Orbiter SO/PHI (see Solanki et al., 2020)
and the Helioseismic and Magnetic Imager aboard the Solar Dynamics Observa-
tory (SDO/HMI) (see Scherrer et al., 2012) would observe them. The applied spectral

* This chapter is strongly based on the paper Photospheric Stereoscopy: Direct Estimation of Solar
Surface-Height Variations from Romero Avila et al. (2024), but the content was adapted to fit the format
of this thesis. All the figures in this chapter were were taken and modified from this paper.
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γ γ γ
Figure 3.1: Test data for the views corresponding to γ = 0○ (i.e. from directly above),
γ = 30○, and γ = 60○.

synthesis procedures can be found in Valori et al. (2022), where they already been
described. More information on SO/PHI and SDO/HMI can be found in Chapter 4.

The resulting data contain the synthesized contributions to the observed in-
tensity of each simulation cell along each ray across the MURaM simulation cube.
The contribution of each cell can be described in terms of their response functions
(Landi Degl’Innocenti & Landi Degl’Innocenti, 1977; Ruiz Cobo & del Toro Iniesta,
1994), which are then used as weight functions for the integration of the line-of-
sight integration with optical depth τ . The computation of the response functions
is done from the atmospheric model created by SPINOR for an inversion of syn-
thetic observation. SPINOR has a subroutine called MapTau, that transforms the
response function in a way that they depend on the geometrical height instead of
the optical depth, to find the average formation heights of the emitted rays. This
subroutine computes the radiative transport through the MURaM simulation for
each viewing angle γ. Its output is a height coordinate along the line-of-sight, which
is compatible with the optical depth scale of the response functions. To obtain a ref-
erence height, or the best possible estimate of the formation height of the observed
light, the dataset is re-binned tomatch the spatial resolution of the observations and
is integrated over the line-of-sight for each ray path. The resulting filtergrams and
reference heightmaps for different values of γ are used as the data to test the height
variation estimates obtained with the method described in the previous Chapter 2.

In this work, only data in the continuum spectral region are used. The data was
synthesised in the continuum region close to the Fe i 6173 Å line (300mÅ outside the
mean line center as observed with SO/PHI). Continuumobservations fromdifferent
vantage points, or different inclination angles γ, are formed at different geometrical
heights, so an intrinsic error in direct comparison results from the formation height
differences. Tomaintain this intrinsic error small, the differences in the inclination
angles are small (at least for the reference cases shown in Sect. 3.3.1 and 3.3.2), and in
some cases even symmetric around γ = 0○.
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3.2 Practical Reformulations of our Method for the Test
Data

Theway the synthetic imageswere produced corresponds to a simplified case for the
application of the stereoscopicmethod. For the simulated data used in this chapter,
a very simplified spacecraft configuration geometry is assumed. The surface plane
is spanned by the ξ, y-axes, being ξ the length coordinate along the surface profile
line. The virtual viewing points are in the ξ, z-plane, in the direction of the assumed
view angles γ, and at an infinite distance.

The images have an orientation such that the epipolar lines are oriented along
their horizontal axis, so that any surface profile line will map to the corresponding
epipolar line in the images. The surface profiles on the different epipolar planes
are parallel and can be labeled by their y-coordinate.

It is convenient to determine a unique physical reference point pref on the sur-
face profile of both images. In the case of the test images, the absolute height ref-
erence z = 0 was implicitly defined in the radiative transfer integrations from the
MHD box. Nevertheless, the computed height variations and the z-dimension in
the obtained results represent relative quantities, not absolute height levels in the
solar photosphere. This is because the MapTau routine computes response func-
tions relative to an arbitrary depth z = 0, which is given by the horizontal average
of the optical depth τ = 1 layer at 5000 Å for vertical emergence (for more details
see Martínez Pillet and Vázquez, 1993; Mathew et al., 2004; Löptien et al., 2018). The
tests performed in this chapter focus on relative height variations along the surface
profile lines.

The next processing step towards the stereoscopic reconstruction is to map the
image intensity data of the two spacecraft to virtual intensity profiles (VIPs, see
Chapter 2) on the surface profile line.

To obtain the VIPs, first the reference point pref has to lie on the surface pro-
file line at a coordinate value ξref . Then its respective pixel coordinate along the
epipolar line of both images has to be found. The test images are equivalent to the
rectified images in Chapter 2, so each epipolar line lies exactly along the image x
axis. With these data we replace t′x for px along the epipolar lines in the images,
and the surface coordinate ρϕ now becomes ξ. In this case, px,A and px,B are the re-
spective coordinates along the epipolar line, with a scale of one pixel width per px,A
and px,B unit, with arbitrary coordinate origins. Using these definitions, a simple
mapping between pixel and surface coordinates is given by

px,A(ξ) = pref,x,A +
1

∆ξA
((ξ − ξref) cosγA − h(ξ) sinγA), (3.1)

and similarly forB (see figure 3.2). Here, ξ and h are scaled to the same units. ∆ξA is
a surface element spaced by one image pixel of imageA (and equivalently for image
B) with a vertical view.

The VIP along a surface profile line in image A (and equivalently in image B) is
then

JA(ξ ∣ h) = IA(px,A(ξ)) ∣
dpx,A
dξ
∣∆ξA, (3.2)

where IA(px,A) is the pixel intensity along the epipolar line. The dependency on
the function h as input for JA is mentioned explicitly because it is required for the
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mapping of (3.1) and for the Jacobian derivative ∣dpx,A/dξ∣. The factor∆ξA in Eqs. 3.1
and 3.2 makes up for different resolutions of the different imagesA andB while the
derivative in Eq. 3.2 takes account of the intensity changes visible on the inclined
true surface h(ξ). JA(ξ ∣ h) = IA(px,A(ξ)) is independent of h for a vertical view
γA = 0. For (3.1) it is required that tanγA < dh/dξ. If this limit is exceeded, the slope
of h(ξ) at a given point is steeper than the view direction’s inclination, so that part
of the surface remains hidden from this viewing point.
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Figure 3.2: Scheme of the relation of Eq. 3.1 for one image with an inclined view
direction.

After the mapping, the VIPs JA(ξ) and JB(ξ) can be directly compared and if
the assumption about the response function holds and h(ξ) was chosen correctly,
the VIPs should be identical.

Choosing a wrong height in a section of the line profile, would result in a local
shift (disparity) of corresponding structures between JA(ξ) and JB(ξ). Therefore
h(ξ) is only sensitive where the image intensity along the line has small-scale vari-
ations that can be measured.

As described in Section 2.1.5 of Chapter 2, JA(ξ ∣ h) and JB(ξ ∣ h)must be win-
dowed, centered and scaled for the stereoscopic comparison. In this chapter two
different approaches to determine h(ξ) by comparing JA,cs(ξ ∣ h) and JB,cs(ξ ∣ h)
are presented.

3.2.1 Correlation Method
With this approach the local height h(ξcent) at the center of the window ξcent is ob-
tained by solving

hcorr(ξ, ξwidth) = argmax
hcent

C(ξcent, ξwidth, hcent),
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where the dependency on the shifts dξA and dξB (see Eq. 2.11) is replaced by the de-
pendency on hcent. Instead of using the full profile function h(ξ), a constant height
hcent inside each window, considered representative for the height at the window
center ξcent is used.

From Eq. 3.1 we see that all the image data inside the window is shifted in ξ by
hcent tanγA and hcent tanγB . Since tanγA ≠ tanγB , the surface profile brightnesses,
IA and IA, are shifted differently until the correlation is maximized at the correct
value of hcent.

Replacing h(ξ) by a constant hcent inside the window around ξcent causes some
inconsistency, which is larger the larger the window width ξwidth. For this reason,
Eq. 3.2.1 is used initially as a first estimate for the correct h(ξcent) for a window size
ξwidth that is sufficiently large to find a stable minimum.

Afterwards, ξwidth is iterated to smaller sizes and the computedminima of hcorr is
compared with the resulting one from the previous wider window sizes. While ξwidth

decreases, the solution of Eq. 3.2.1 becomes increasingly prone to errors induced by
local intensity variations and noise.

The iteration is stopped when the discrepancy between predicted and computed
hcorr becomes too large or if a minimum ξwidth is reached, and the latest hcorr is taken
as h(ξcent).

3.2.2 Optimization Method

As mentioned in Section 2.2 of Chapter 2, an optimization procedure was applied
to extend the correlation method when it is applied to the test data. This second
approach helps to avoid the inconsistency of the correlationmethod byminimizing
fcost(ξcent, ξwidth, h) with respect to h(ξ)

As stated in Chapter 2, the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm is used. This algorithm is based on a gradient search, meaning that it requires
the gradient∇hfcost(ξcent, ξwidth, h), that can be analytically calculated by tracing the
h-dependence by chain rule down to (3.1) and (3.2).

For the calculations, it is assumed that the grid for ξ is equidistant, and then it is
mapped to the images by (3.1). Changing a single height element h(ξi)→ h(ξi)+∆h
will result in a shift in the mapping of the grid boundaries of cell i onto the im-
age and will therefore affect the values of Jk(ξj) at j = i − 1, i, i + 1 (see Fig. 2.9).
However, these modifications proportional to ∆h become small in regions where
the image data Ik(xk(ξ) has little structure, so that the local gradient ∇hfcost be-
comes small and the minimization algorithm becomes insensitive to changes in
h(ξ), and data noise may have a larger influence on fcost. The regularization term
in (2.18), proportional to the regularization parameter µ is added to keep the noise
dependence small. Depending on the magnitude of µ, this term will smooth h(ξ)
and lead to some loss of resolution and detail, but it will also stabilize the solution
where fcost(ξcent, ξwidth, h) is too insensitive.

3.3 Performance on the MethodWith Test Data
To judge the performance of our method, the resulting height variations are then
compared to the height variation of the response function RT (ξ, z).
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Themethods described in Section 3.2 depend on a number of parameters which
may have an effect on the results, and it is convenient to first determine which set
of parameters yields the best results. In both approaches, the correlation and the
optimization, a free parameter is the surface grid spacing ∆ξ to which the VIPs
from both view points are discretized. Another free parameter is the width ξwdth of
the window function w used for the scaled intensity profiles Sk. It can be expected
that for the optimization method, ξwdth has a minor influence on the results, but
it requires another parameter, the regularization coefficient µ, which controls the
main smoothing of h(ξ).

To display the influence of these parameters on the results, their effects are
shown for a standard case, with viewing configuration of γ = ∓20○ to the vertical
view and images without noise. Once the set of optimal parameters for the stan-
dard case mentioned was found, other parameters given by different observational
circumstances like different viewing angles, different sizes of the image pixels and
different noise levels, are investigated.

The biggest advantage of working with synthetic data is the capacity to quantita-
tively compare the resulting height variation estimates along a surface profile with
the vertical variation of the response function. For this reason we characterize the
moments p of the response function relative to an arbitrary height reference

Mp(ξ) = ∫ (z − zref)pRT (ξ, z)dz. (3.3)

The response function RT (ξ, z) used above was calculated for a vertical view direc-
tion. Now, a local, ξ-dependent parameter Err is introduced, which measures the
distance between h(ξ) and the vertical mean hmean of the response function with
respect to its height extent hwdth:

Err(ξ) = ∣h(ξ) − hmean(ξ)∣
hwdth(ξ)

, (3.4)

where hmean(ξ) =
M1(ξ)
M0(ξ)

and hwdth(ξ) =

¿
ÁÁÀM2(ξ)

M0(ξ)
− h2

mean(ξ). (3.5)

Figure 3.3 displays an example of a typical response function RT (ξ, z). For a
single point in the quiet Sun, the response function is shown as a function of the
optical depth (top) and of geometrical height (bottom). RT (ξ, z) is often skewed so
that themaximum of RT (ξ, z) generally lies below hmean by around hwdth. Addition-
ally, a global measure to asses the quality of our results along an entire ξ-profile is
defined as

ε = (∫
Err2(ξ)dξ
∫ dξ

)
1
2

. (3.6)

3.3.1 Test of the Correlation Method
The critical parameters in this method are how Jk(xk(ξ)) is discretized (see equa-
tion 3.2) and the smallest window size ξwdth used in (2.1.3). To test both parameters a
standard surface grid spacing∆ξ = dx is chosen which corresponds to the pixel size
dx (in km) at a vertical view direction γ = 0○mapped to the surface. This spacing will
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Figure 3.3: An example of the RF as a function of the optical depth τ (top), and of
the height h (bottom) at a given position ξ along the profile. In the right diagram
is marked hmean with a red vertical line and the height extent ±hwdth as the black
horizontal range.
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be called ∆ξor further on. For oblique views, a grid interpolation is required when
JA(px,A(ξ)) and JB(px,B(ξ)) are convolved with the window function in order to
obtain JA,cs and JB,cs in (2.7).

The reconstructed height h(ξ) is displayed along a surface profile across the
simulated active region in figure 3.4. The height was calculated separately for two
different window size ranges of ξwdth = 15 to 20∆ξor (top) and ξwdth = 30 to 60∆ξor
(bottom). First the correlation height was estimated using the maximum allowed
ξwdth and then ξwdth was reduced until the smallest size for which the height could
not be estimated anymore due to a lack of structure inside of the window, or until
the smallest ξwdth of the allowed range was reached.

The determined height h(ξ) is the one obtained from the smallest window size
inside the respective size range, displayed by the red curves in figure 3.4. At some
points in ξ, the correlation procedure will yield wrong localized outliers, which arise
from numerical errors and are to be expected. To reduce these outliers, h(ξ) is
smoothed using a rolling average of 8 data points, after which the height estimate
of the green curves is obtained.

To have a visual comparison of the height h(ξ) reconstructed with this method
with the reference height from the simulation for test images (referred to as true
height), a range of heights associated to RT (ξ, τ) is displayed in a gray scale. The
lightest gray range representsRT /RTmax ≃ 0.5, the intermediate range toRT /RTmax ≃
0.7, and the darkest toRT /RTmax ≃ 0.9, whereRTmax is themaximumvalue of the re-
sponse function at a fixed ξcent. These curves represent the height variation around
the response function maximum with respect to the optical depth.

The mean error ε derived from Eq. 3.6, for the two window size ranges of ξwdth

are ε = 1.44 for ξwdth = 15 to 20∆ξor, and ε = 2.26 for ξwdth = 30 to 60∆ξor. The min-
imal cost function for each case is 0.11 and 0.09, respectively. The reconstructed
heighth(ξ)has a better agreementwith the true height for the narrowerwindow size
ranges, while for the wider window size range a smaller cost function was obtained.
When using real data, the cost function value, which measures the agreement be-
tween the twoVIPs JA,cs and JB,cs, is the only number that can be used to assess the
quality of the results, since a reference true height is not available. Therefore, using
the cost function as a quality parameter must be done with some care.

In this comparison, and in all the further results that will be shown in this chap-
ter, the calculated height h(ξ) for the quiet Sun systematically lies below the height
of the maximum response function, or true height. The response function in the
quiet Sun is very skewed with a tail upwards, so that the vertical barycenter hmean

of the response function is even higher than the height of the maximum response
function. This difference grows for more inclined view directions. However, this
difference is much smaller in the umbra of the active region.

The relative error (Eq. 3.5) is displayed in all the figures in the bottom panels.
Err measures the mean error with respect to the width of the response function,
so for any error smaller than Err = 1, the height estimate can be considered to
have a good agreement with the true height. Err = 1 is marked in the figures as
a dashed line. The agreement is best in the deepest parts of the active region, and
discrepancies arise towards the quiet Sun. The most visible discrepancies arise in
the penumbral area, where strong, fast height gradients occur. Even though we can
only calculate relative height variations with this method, the error number Err
allows to know the regions where the estimated height behaves similarly to the true
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Figure 3.4: Correlation method results with a ξwdth range of 15 to 20 ∆ξor (top) and
a ξwdth range of 30 to 60∆ξor (bottom), where∆ξor = 41.7km, for the viewing angles
γ = −20○ and γ = 20○.

height, even if there is an offset present in the results, and where the estimated
height has discrepancies that even after an offset correction they would be wrong.

The next parameter that was studied was the grid spacing ∆ξ at which the VIPs
JA and JB were discretized. The standard spacing∆ξ =∆ξor yielded the best result
for the correlation method. Using a finer grid results in oversampling of the data,
increasing the computation time and the number of outliers; and using a coarser
grid yields more stable results but the spatial resolution is reduced. The effect of
changing ∆ξ is discussed more in the next sections, with the tests of the optimiza-
tion method.
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Grid Spacing∆ξor Grid Spacing 2∆ξor
ε fcost ε fcost

Correlation 1.44 0.11 2.35 0.09
µ = 10−8 1.44 0.05 2.63 0.05
µ = 10−7 1.44 0.04 2.63 0.05
µ = 10−6 1.44 0.05 2.63 0.05
µ = 10−5 1.43 0.05 2.52 0.04
µ = 10−4 1.91 0.08 1.97 0.08
µ = 10−3 2.60 0.16 2.74 0.16
µ = 10−2 3.24 0.24 3.21 0.24

Table 3.1: ε and fcost function numbers for the results of figure 3.4(a) with a ξwdth of
15 to 20 ∆ξor, and their optimization using different µ values, using the standard
grid spacing ∆ξor (left) and 2∆ξor, for the view angles γ = −20○ and γ = 20○.

3.3.2 Test of the Optimization Method

Even though the optimization method is methodologically more consistent, it in-
volves a non-convex optimization problem and is non-linear because the matrices
that must be inverted at each iteration step depend on JA and JB , and therefore on
the h(ξ) estimate at each iteration step.

The smoothed result from the correlation method (green curves in figure 3.5)
are used as the initial h(ξ) of the optimization iterations. The calculations were
performed for different grid spacings ∆ξ and also for different values of the regu-
larization parameter µ to test the performance of this second method.

Table 3.1 summarizes the error number ε and the finally reached cost function.
The table shows the results for the surface grid spacing ∆ξor on the left section,
while the results on the right were computed using a coarser grid size of 2∆ξor.
The ”Correlation” row refers to the initial height h(ξ) obtained from the correla-
tion method, while the results obtained by optimization iterations with different
regularization parameters are shown in the rows below. The lowest error values ε
and cost function are underlined.

With the optimization method the cost function decreases from its initial value,
obtained by the correlation method. Reducing the cost function of the profiles is
the aim of the optimization method. However, the regularization parameter that
yields the smallest cost function and the one that gives the smallest ε do not agree.
For both grid spacing cases, the µ that yields the smallest ε, is larger than the one
that yields the smallest cost function.

The reconstructed height h(ξ) after the optimization for different grid spacing
and µ values are shown in figure 3.5. These figures have the same format as figure
3.4 and the results were computed along the same surface profile. As in Table 3.1,
the top plot shows the results for the standard grid spacing, while the bottom one
shows those for the coarser grid spacing of ∆ξ = 2∆ξor.

In both plots of figure 3.5 the curves show to the resulting height vectors us-
ing µ = 10−6,10−5 and 10−4 as the regularization parameter, plotted in red, green
and blue, respectively. Figure 3.5 shows the effect that the regularization parame-
ter has on the results: very small µ values make no significant changes on the re-
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Figure 3.5: Height vector optimization results for the views of γ = −20○ and γ = 20○
with a grid spacing of ∆ξor = 41.7 km (top), 2∆ξor = 83.4 km (botom) and different
values of µ.
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constructed height h(ξ) obtained first with the correlation method, while larger µ
values smooth out many small-scale structures but reduce the number of outliers.
A value of µ = 10−5 is chosen as the standard parameter for the further tests, along
with the standard grid spacing ∆ξor, since it is a value that smooths out some of
the outliers while still keeping a reasonable amount of detail in the reconstructed
height.

It was mentioned already in Section 3.3.1 that a smaller cost function does not
necessarily mean that the reconstructed height has a better agreement with the true
height. It means that a pair of VIPs are very similar to each other. Two very similar
VIPs, and therefore a small cost function, can be produced with a height vector that
has a great number of outliers even if it has poor agreement with the true height.
The VIPs can locally be insensitive to changes in h(ξ) in regions where there is not
much structure, so that the vectormight havemany outliers in these regions and not
affect the cost function. On the other hand, a smaller µ allows to reproduce more
details in the height variation. However, in the quiet Sun area, the reconstructed
details do not always agree with the fine-scale height variations of the true height.

3.3.3 Test of the Effect of Viewing Angles

The parameters that yield the best results, i.e. the smallest number of outliers while
displaying enough detail, are used as the standard set of parameters from now on
to evaluate the effect that different viewing parameters have on the results. These
parameters are the window size range ξwdth set to 15 to 20 ∆ξor, the surface grid
spacing of ∆ξ = ∆ξor, and the regularization parameter set to µ = 10−5. In this
section the height h(ξ) is reconstructed for different sets of viewing geometry in
order to study the effects that the viewing geometry has on the results.

The effect that increasing observing angles has is displayed in figure 3.6. The
tests for both the correlation and the optimization methods were performed with
a combination of a completely vertical view at γ = 0○ and inclined views at γ = −30○
and γ = 30○. In both cases, on the respective near-sided slope of the active region
there is a large disagreement between the reconstructed height and the true height.
The reason for this discrepancy is the fact that the ±30○ viewdirections come close to
the slope inclination of the respective height profile. In each image, the structures
on the near-side slope appear compressed in the image and correlating them with
the vertical view is likely to be less stable. This effect is consistent for both viewing
directions displayed in Figure 3.6, only on opposite sides of the sunspot. Because
of the large discrepancy present in both cases, the mean error of the reconstructed
height vector increased to ε = 3.23 for the viewing geometry of γ = −30○ and 0○ (top),
and ε = 2.24 for the viewing geometry of γ = 0○ and 30○ (bottom).

Figure 3.7 shows another example of an asymmetrical viewing configuration,
where the angles are −10○ and +20○, so that the total separation between the view-
ing points is again 30○, like in Fig. 3.6, but in this case none of the view directions
has a view angle larger than ∣θ∣ = 20○. The final reconstructed height after the opti-
mization has a mean error of ε = 1.37. The general agreement of the reconstructed
height of Fig. 3.6 with the true height is good, even though some of the smaller scale
structures have been smoothed out during the optimization.

In the two earlier cases the separation angle of the viewing points was of 30○.
Now the effect of the viewing geometry is studied by reconstructing the height for
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Figure 3.6: Results for the reconstructed height vector for the viewing angles of
γ = 0○ and −30○ (top) and γ = 30○ and 0○ (bottom), using a grid spacing of ∆ξor = 41.7
km and a regularization parameter of µ = 10−5
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γ

Figure 3.7: Results for the reconstructed height vector for the viewing angles of γ =
−10○ and +20○ using a grid spacing of∆ξor = 41.7 km and a regularization parameter
of µ = 10−5.

γγ

Figure 3.8: Comparison of the reconstructed height vectors for γ = ∓10○ (red) and
∓20○ (green), using a grid spacing of ∆ξor = 41.7 km and a regularization parameter
of µ = 10−5.
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symmetrical view angles but with different separations of γ = ∓10○ and γ = ∓20○.
The results are shown in figure 3.8 as the red and green curves, respectively, but
only the optimization results for both view angle pairs is presented.

The results in figure 3.8 show that the reconstructed height has a better agree-
ment if the observations are symmetric. The mean error for γ = ∓10○ is ε = 1.38, and
for γ = ∓20○ the error is ε = 1.43, in both cases smaller than the error obtained in
the previous two tests. The overall error is smaller for symmetrical viewing geom-
etry than for asymmetrical viewing geometry, while the error is also smaller if the
separation angle is smaller. Nevertheless, for the pixel size of the synthetic images
of dx =∆ξor = 41.67 km and a given viewing angle γ the depth resolution is roughly
limited to ∆h = dx/ sinγ = 122 km for γ = 20○ and 240 km for γ = 10○.

The obtained height for γ = ∓10○ has a good agreement with the true height,
even though the height curve is very smooth, so some of the smaller scale details
have been lost due to the lack of resolution and over-regularization with the chosen
standard value for µ. A large µ value during the optimization may over-smooth the
reconstructed height.

Comparing reconstructed height profiles for the different sets of viewing an-
gles gives information on how the viewing geometry affects the results: the recon-
structed height has a smaller ε if both views are symmetrical and for smaller sep-
aration angles up to ±10○. Errors might arise on the slopes of the active regions if
one of the viewing angles is too large so that the view direction comes close to be-
ing parallel to the respective near-side slope. If the total separation of the viewing
angles is small enough, the results from the correlation method are already reliable
and the optimization does not improve the results considerably.

3.3.4 Analysis of a Second Profile of the Active Region

Another intensity profile from the same simulated active region was analyzed, this
time for a different epipolar line profile in the images. This new profile has more
structure inside the active region and is therefore more complicated. The height
was reconstructed for the standard view geometry of γ = ∓20○, with both the stan-
dard grid spacing∆ξ and the coarser one. The effect of observing with asymmetri-
cal viewing geometry of γ = 0○ and ∓30○ using the standard set of parameters from
Section 3.3.2 is also studied.

Like the results presented in Section 3.3.2, the reconstructed height h(ξ) has a
better agreement with the true height when the standard grid spacing ∆ξ = ∆ξor
was used, compared to ∆ξ = 2∆ξor. The reconstructed height curves in figure 3.9
show the results of the correlation method in red, and the optimization method
with the standard grid in green and in blue for the coarser grid spacing, both using
a regularization parameter of µ = 10−5. The mean error for the correlation results
is ε = 2.18, and for the optimization are ε = 2.15 for ∆ξ = ∆ξor, and ε = 2.27 for
∆ξ = 2∆ξor.

This profile of the active region has a structure on the left slope of the penumbra
where the true height profile has a sharp peak. The analysis from γ = ∓20○ does not
reproduce this feature well, even after optimizing the height vector. However, if the
viewing geometry is different it can be reproduced, as demonstrated in the left plot
of figure 3.10. Both curves in figure 3.10 correspond to the reconstructed height for
the vertical view of γ = 0○, and for γ = −30○ (top), and γ = 30○ (bottom). As in figure
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γ

Figure 3.9: Correlation and optimization results for the reconstructed height vector
for the viewing angles of γ = ∓20○ with different grid spacings of ∆ξor = 41.7 km
and 2∆ξor = 83.4 km and a regularization parameter of µ = 10−5

3.6, a disagreement with the true height at each near-side slope arises. Nevertheless,
in the bottom plot of figure 3.10, even when there is a disagreement with the true
height on the right, near-side slope due to the viewing effect previously described
(figure 3.6), the local peak feature inside the active region is well reproduced, since
it lies on the far-side slope. Specially after the optimization, displayed in the green
curve, this feature on the left slope is very well reproduced, while the disagreement
with the true height decreases considerably after the optimization. This happens in
both diagrams of figure 3.10.

For the first profile, which was simpler, presented in Sections 3.3.1 and 3.3.2 the
correlation results generally have a good agreement with the true height and the
optimization procedure did not change or improve the agreement with the true
height significantly. On this second profile, due to the complex structure previously
mentioned, the correlation method does not yield by itself such good results, and
the optimization makes a clear improvement here. This suggests that depending
on the structure within the active regions, either the correlation or the optimiza-
tion method can be chosen in order to achieve the best results. The results depend
strongly on the viewing geometry and errors arise when the angle between one of
the view directions and the local tangent of the surface becomes too small.

3.3.5 Testing the Effect of Noise in the Reconstructed Height

Real observations always have an amount of noise, so the performance of themethod
developed in this work also has to be tested with noisy images. For this the calcula-
tions were run while noise was increasingly added to continuum intensity images.
To only have the noise level as a variable, the standard parameters were used for the
calculation: view angles of γ = ∓20○ and the single grid spacing. The cost function
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γ

γ

Figure 3.10: Results for the reconstructed height vector for the viewing angles of
γ = −30○ and −0○ (top) and γ = 30○ and 0○ (bottom), using a grid spacing of ∆ξor =
41.7 km and a regularization parameter of µ = 10−5.
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Figure 3.11: ε (top) and cost function fcost (bottom) curves as a function of the signal
to noise ratio.

and ε were determined for the reconstructed height obtained from images in which
the noise levels were successively increased by a factor of ten. For each increase level
of the image signal-to-noise ratio (SNR) the mean and standard deviation of ε and
the cost function was determined.

In figure 3.11 themean ε and cost function as functions of the SNR are displayed.
The error bars for each point represent the corresponding standard deviation. As
it was to be expected, the mean error and the cost function decrease with the noise
level. Above SNR of about ≃ 102 the decrease is not relevant and the error and cost
function result to the level that is intrinsic to the developed method. Oppositely,
noise influences the height estimates significantly only for a SNR smaller than 102.

In figure 3.12 the results of reconstructing the height vector at some of the noise
levels are displayed. The red curve corresponds to the reconstructed height for pro-
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Figure 3.12: Reconstructed height vector for for the VIPS of the viewing angles of
γ = −20○ and γ = 20○ with different levels of added noise.

files with no added noise. The reconstructed height of the green curve was obtained
from profiles with a SNR of 500, and the blue curve from profiles with a SNR of 50.
These two SNR values were presented because a SNR of 500 or higher can be ex-
pected for real observations (see Solanki et al., 2020). If the SNR is 50 the obtained
results are still reliable on average, but where the slopes are steep this method may
yield locally larger errors. The number of these localized errors increases with de-
creasing SNR.

3.3.6 Full 2D Height Maps

In the earlier sections of this chapter only the results for single individual profiles
across the active region were displayed. If adjacent epipolar lines in the y direction
are successively processed and then the reconstructed 2D profiles are stacked , full
2D surface areas can be scanned in order to obtain 2D maps of the reconstructed
height.

For the production of thesemaps the selected parameters are the same through-
out all the successive epipolar lines, and each profile is calculated individually. The
selected parameters for this task were the standard parameters: viewing angles of
γ = ∓20○, a surface grid size of ∆ξ =∆ξor, a window size range of ξwdth = 15 to 20∆ξ
for the correlation, and a regularization parameter of µ = 10−5 for the optimization
method. Just like in the previous sections, an initial reconstructed height h(ξ) was
obtained from the correlationmethod, then smoothed and used as the initial vector
for the optimization. Therefore each horizontal line in the 2D heightmaps is the re-
constructed height of the respective profiles after the optimization. No smoothing
was applied in the y-direction.

To visualize the effect that different image resolution has on the results, the hor-
izontal (x direction) resolution of the images was successively degraded by a factor
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Figure 3.13: 2D heightmaps obtained from the successive reconstruction of epipolar
profiles using image pairs with view direction γ = −20○ and γ = 20○. Increasing
image pixel sizes of 41.7 km, 83.4 km, 166.8 km, and 291.9 km in the x-direction in
figure (a), (b), (c), and (d), respectively, have been used. In the y-direction the pixel
size is always 41.7 km.

2 each time, producing four different image sets with image pixel sizes dx = ∆ξor =
41.7 km, 83.4 km, 166.8 km, and 291.9 km, so that a different resolution was used
for each 2D height map. The pixel size in y was not degraded, and the resolution
was kept the same for both views in each map. The resulting 2D height maps are
shown in figure 3.13(a), (b), (c), and (d).

The trade-off between resolution and quality is clearly shown in the heightmaps
in figure 3.13. Again, to assess the quality of the results, they are compared with
the true height map, obtained from the barycenter height of the response function
RT (ξ, z) for the vertical view direction of γ = 0○. The reference height map was
computed directly from the MHD simulation, and is presented in figure 3.14. The
maps obtained from the comparison of images with higher spatial resolution show
more visible errors, which appear as bright red or dark blue regions. On the other
hand, the lower resolution maps show fewer errors, but many of the smaller scale
structures, especially the structures inside the pore are not reproduced. The resolu-
tion of figure 3.13 (d) is comparable to the best resolution that real images, obtained
from observations of SO/PHI and another spacecraft, e.g. SDO/HMI, at a distance
of roughly 1 AU, will have.
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Figure 3.14: True height map obtained from the average of the heights associated to
the response functionRT (ξ, z) (see Eq. 3.3 within a range of R/Rmax ≃ 0.5 of the full
resolution synthetic data.

Another remark is that in figure 3.13 the resolution was degraded only in the
horizontal direction of the images. All images are vertically composed of 340 re-
constructed height vectors with a resolution on the vertical direction of ∆ξor = 41.7
km.

3.3.7 Estimating a Height Vector for Two Views With Different Resolu-
tion

The last tests conducted with the test data aimed to evaluate the results obtained
if the image resolution is different for both views. Real photospheric observations
for stereoscopy use combined data, in the case of this work obtained by SO/PHI
with SDO/HMI, so it is to be expected that both of the images that will be used
to estimate the photospheric height variations with this stereoscopic method will
have different resolutions. The synthetic images from both views were degraded to
different and realistic resolutions for this test.

The respective results for the reconstructed height along the epipolar profile
used in Sections 3.3.1, 3.3.2 and 3.3.3 is displayed in figure 3.15. The view directions
were γ = −20○ for the higher resolution image, with a horizontal resolution of 166.7
km and γ = 20○ for the lower resolution image with a horizontal resolution of 291.9
km. The height was reconstructed, for this pair of images, first using a surface grid
spacing of ∆ξ = 4∆ξor = 166.7 km (top diagram), and then of ∆ξ = 7∆ξor = 291.9 km
(bottom diagram). The parameters used were the same as in the previous section.

The surface grid∆ξ had the same spacing for either of the intensity profiles. The
left diagram in figure 3.15 displays the reconstructed height obtained by mapping
both images to the higher surface resolution grid, and therefore increasing the size
of the low resolution image. The error number in this case was of ε = 4.59. The right
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Figure 3.15: Reconstructed height vector from optimization method applied to im-
ages with different pixel resolution. The γ = −20○ view has a a pixel size of 166.8 km
while the view of γ = 20○ has one of 291.9 km. The spacing of the surface grid is
∆ξ = 166.7 km (top) and ∆ξ = 291.9 km (bottom).
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Figure 3.16: 2D height map calculated for the viewing angles of γ = −20○ with a
pixel size of 166.8 km and γ = 20○ with 291.9 km. The grid spacing in (a) is of
∆ξ = 4∆ξor = 166.7km, and for (b) it is ∆ξ = 7∆ξor = 291.7km.

diagram displays the reconstructed height when both images were mapped to the
lower surface resolution grid, so that the size and resolution of the higher resolution
image profile were degraded. The error number here was slightly increased, being
ε = 4.71. These results show that the resolution of the lower resolution image limits
the quality of the reconstructed height.

Both reconstructed height vectors have higher error numbers than the results
of the previous sections of this chapter due to the larger pixel sizes used here. This
implies that the resolution of the data limits the quality that can be achieved in
the reconstructed height, and additionally, the lower resolution image plays a de-
termining role in the quality or resolution that can be achieved in the results. The
error is roughly tripled, in comparison to the standard case in the left diagram of
figure 3.5, while the pixel sizes used in this section where larger by a factor 4 and 7.
Comparing them to the earlier results of this chapter, the depth of the sunspot is
still relatively well reproduced, but the depression is estimated to be have a much
larger size than has, so that the depression of the solar surface is estimated to cover
a larger area as well.

To finish the analysis of the performance of this method with the test data, the
2D heightmaps for the results from different resolution images are shown in figure
3.16. The geometry and resolution is the same as for the single profile test of figure
3.15, but for these maps the heights obtained over the whole image are presented.
The resolution of both images is very low, which limits the amount of detail that
can be reconstructed. However, very few outliers are present in these results. This
is another example of the trade-off between quality and resolution that is always
present in the results of this chapter.

3.4 Summary and Discussion
The tests conductedwith the syntheticMHDdata of the performance of themethod
show that the stereoscopic method developed in this work allows to estimate height
variations on the solar surface from the observations obtained from two different
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viewing points. TheWilson depression of the simulated active region was of around
600 km, and the reconstructed height profiles agree with this quantity.

With the synthetic data, theWilson depression can be estimated with good pre-
cision, and even some of the structures within sunspots or large pores can be re-
produced if the observing conditions are adequate. Of course, the test data used
in this chapter represents a very simplified test case, but by running the tests here
provided, a good idea of how this method will perform when applied to real obser-
vations can be obtained.

The results yielded by the stereoscopy method are robust for viewing points
with a separation ranging from 10○ to 40○, approximately. If the separation angle is
smaller than 10○, the geometrical resolution error of the height vector should theo-
retically increase as 1/ sin(∣γA − γB ∣/2). If the separation angle is larger, it eventually
leads to problems if one of the viewing direction tangentially approaches the slope
at the edges of the sunspot.

The method also produces stable results when applied to images that were con-
taminated by a limited amount of noise. The Wilson depression could be repro-
duced for all the intensity profiles with SNR ≤ 50. For larger levels of noise, the
precision with which smaller scale structures are reproduced decreases, and only
larger scale structures are reproduced.

A big advantage that this stereoscopic method has is that it requires only two
surface images as input to perform the calculations to obtain height variation esti-
mates. Previousmethods required a series of assumptions to indirectly estimate the
Wilson depression (see, for example Löptien et al., 2020). For our method only the
two intensity profiles taken from two different vantage points in the same spectral
window is needed.

The biggest limiting factor for the performance of our method is the spatial res-
olution of the images. The higher the image resolution, the smaller are the struc-
tures that can be reproduced. The theoretical height resolution (see Eq. 2.15) for the
synthetic images under the standard viewing geometry is of 60 km, and at any given
point the height estimate has an error of h̄th ≈ ±30 km, so any given fluctuations
smaller than that are uncertain and and may be produced by our method due to
the limited resolution of the image data. For the resolution of the synthetic images
employed in this paper, theWilson depression and even some of the finer structure
within, or in the quiet Sun can be reproduced. However, it is to be expected that
when applying the method to real observations, only theWilson depression can be
estimated, because of the limiting resolution that the real data will have.

Another factor that sets a limit on the resolution is the finite thickness of the
photospheric opacity layer. A fundamental assumption of out method is the as-
sumption that this layer is infinitely thin so that it can be characterized by a single
heighth(ξ), instead of by a height distribution (see Eq. 1.7). For real observations the
height distribution barycenter varies with the view angle, so that the height h(ξ) ob-
tained can only be approximate. The formation of the observed radiation is shifted
further to higher altitudes, the larger the angle between view direction and surface
normal.

In some cases (see Table 3.1, figure 3.6 left), the agreement between the calcu-
lated height and the true height is not improved by the optimization method, as
compared to the correlation results. This happens because the optimization im-
proves the cost function and not necessarily the error number ε. The optimization
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procedure deals with small scale differences between the two intensity profiles by
producing a height vector that yields similar mapped VIPs from both views, even if
this does not necessarily produce a better agreement with the true height.

The main systematic discrepancy is a small offset between the calculated height
and the reference height. This offset appears through the entire epipolar profile,
but changes for different viewing conditions. This could be due to differences in the
formation height (Carlsson et al., 2004) of the observed radiation. In these tests all
the height variations were compared with the true height obtained only for the ver-
tical view. Throughout all the results, regardless of the offset, the quiet Sun height
estimates systematically fall below the true height; while the estimated depth of the
umbra agrees much better with it. This offset at the quiet Sun might be produced
by asymmetries in the τ = 1 layer by observing the photosphere from an inclined
viewing point. These asymmetries may result in a shift of the quiet-Sun features
and therefore an artificial disparity, interpreted as a vertical offset by the correla-
tion algorithm. For this reason it is to be expected that the estimates of theWilson
Depression, derived from the height difference between the quiet Sun and the um-
bra, are a few tens of kilometers smaller than in the reference data. The reason that
our estimate of theWilson depression is slightly smallermight be a combined effect
of the averaging of the depth profile within the correlation window, the flattening
of the τ = 1 layer that appears when observing the photosphere from an inclined
viewpoint, and the asymmetry of the observations from different directions, which
could increase the disparity of the structures on the quiet Sun. Whenusing real data,
a margin of error of this order can be expected, as well as an offset in the results.

Themain aim of themethod presented in this work is to apply it to real observa-
tions in order to produce real estimates of theWilson depression. Real observations
have different levels of resolution, noise distortion, and projection. In order to ap-
ply thismethod to real observed images, some pre-processing will be needed so that
two images taken from arbitrary positions appear similar to the test data used in this
chapter. In the next chapter, these necessary pre-processing steps are explained.
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Chapter 4

Application of the Method to Real Data

In this chapter results from applying the correlation method to real observations
are reported. The content of this chapter is as follows. In the first section the ob-
servations are presented and a brief overview of the detectors with which the obser-
vations were made is given. An example of the transformation of pixel coordinates
into homogeneous coordinates is given and an example of the rectification of the
images is presented as well. For rectifying the images theWCS header entries of the
observations need to be corrected, so that a next section in this chapter shows a brief
algorithm for this. Lastly, the results of applying the correlation method to the real
data are presented and the performance of the method is discussed. Different from
Chapter 3, the optimization method was not applied to the real observations, since
the correlation method gave results that are reliable enough, and not significantly
improved by the optimization.

4.1 Observations FromSO/PHI and SDO/HMI: Some Infor-
mation on the Instruments and Their Images

In this work we combine observations from the Polarimetric Helioseismic Imager
on board the Solar Orbiter spacecraft (SO/PHI) and the Helioseismic and Magnetic
Imager on board the Solar Dynamics Observatory (SDO/HMI).

Solar Orbiter (SO) (Müller et al., 2020) is a joint mission of ESA and NASA dedi-
cated to solar and heliospheric physics, launched on February 10th, 2020. It has 10
instruments on board, SO/PHI being one of them. SO/PHI (Solanki et al., 2020) is a
diffraction limited, wavelength tunable, quasi-monochromatic, polarisation sensi-
tive imager. The instrument provides maps of the magnetic field vector and of the
line-of-sight (LOS) velocity in the solar photosphere as well as the continuum inten-
sity around 6173Å in an Fe I line. It probes the deepest layers of the solar atmosphere
among all the instruments on Solar Orbiter. It is composed of two telescopes: the
High ResolutionTelescope (HRT) and the Full DiskTelescope (FDT). All the images
from SO/PHI used in this work are HRT images. HRT has an aperture diameter of
140mm,and observes only a fraction of the solar disk at a resolution of up to 200 km
at perihelion. For more information on SO/PHI see Gandorfer et al. (2011), Solanki
et al. (2015), and Gandorfer et al. (2018).

The Solar Dynamics Observatory (SDO) is the first mission launched as part of
NASA’s LivingWith a Star (LWS) Program, aimed to understand the solar variability
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and its causes and impacts on Earth. SDO studies the solar atmosphere in many
wavelengths simultaneously in order to help understand the influence of the Sun
on the Earth and near-Earth space. On board SDO are three instruments, one of
them being SDO/HMI.

SDO/HMI is an instrument designed to study the oscillations andmagnetic field
in the photosphere. It observes the full solar disk at 6173 Å, observing the same Fe I
line as SO/PHI, with a resolution of 1 arcsecond. Both instruments provide dopp-
lergrams, continuum filtergrams, and both line-of-sight and vector magnetograms.
For more information on SDO/HMI see Scherrer et al. (2012) and Schou et al. (2012).

In this work only continuum observations from both instruments are used. The
signal to noise ratio (SNR) of the continuum observations of SO/PHI and SDO/HMI
for the quiet Sun is of around 15000 and 10000, respectively , with a decrease to
around 4000 in the umbra due to the decreased intensity in the umbra. There are
combined observations from SO/PHI and SDO/HMI frommultiple dates, those on
March 3rd, March 17th and October 29th of 2022 are used in this work. Even though
the correlation method is only applied to the observations of the last date, images
of the first two dates will also be presented, mainly to illustrate how rectification
works, the issues that arose while rectifying the images, and how they were solved.

Figure 4.1 displays continuum observations of the solar photosphere on March
3rd of 2022 at 09:45 UT. The time mentioned in this chapter ia the time on Earth,
but the corresponding time adjustment ismade for the corresponding observations
of SO/PHI and SDO/HMI, considering the light travel time. Since the SO/PHI ob-
servations are performed with the High Resolution Telescope, and the SDO/HMI
ones are performed with a full disk telescope, the FOV of both spacecraft is very
different. For these observations, the resolution of the SO/PHI images is 198 km
per pixel, and that of SDO/HMI 366 km per pixel. For this reason only a part of the
FOV of SDO/HMI centered on the sunspot group is displayed in the next figures.
At the time of the observations, SDO/HMI was the spacecraft ahead, and SO/PHI
was the spacecraft behind. The position of the spacecraft in HEEQ coordinates is
[1.47 × 108, 1.25 × 105, −1.87 × 107]km, and [8.11 × 107, −8.60 × 10, − 5.91 × 106]km,
respectively. Their respective distances from the Sun center were approximately 1
and 0.55 AU, with a separation of approximately 7○ between both spacecraft.

After setting the intrinsic parameters for both spacecraft, it is possible to visu-
alize the observations in normalized coordinates, instead of pixel coordinates (see
Chapter 1.2.1). The observations fromfigure 4.1 displayed in normalized coordinates
are shown in figure 4.2. The obvious difference between the images is a manifesta-
tion of their different extrinsic matrix parameters.

As has been previously described, the stereoscopic analysis has to be performed
on the rectified observations. In figure 4.3 we show the positions of both space-
craft with respect to the Sun and the position of the central epipolar plane. This
is required for rectifying the images and transforming the problem to a common
coordinate system particular to the spacecraft configuration at the time of these ob-
servations. The images are rectified such that the rectified view direction of both
spacecraft are parallel and in the epipolar plane with the label ζ = 0 (see Eq. 1.58).

In figure 4.3 it is seen that the epipolar plane is oblique to the heliospheric equa-
tor. The rectified images are therefore rotated from the HEEQ axis frame. The rec-
tified images are shown in figure 4.4, and not only are they obliquely reprojected,
but it can also be seen that the sunspot in the images has now the same orientation,
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Figure 4.1: Continuum intensity observations from SDO/HMI and SO/PHI on
March 3rd of 2022 displayed in pixel coordinates.

Figure 4.2: Continuum intensity observations from SDO/HMI and SO/PHI on
March 3rd of 2022 displayed in homogeneous coordinates.
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Figure 4.3: Configuration in HEEQ coordinates of the position of both spacecraft
on March 3rd of 2022. The shadowed plane formed by both spacecraft and the Sun
center is the central epipolar planewith the label ζ = 0 and towhich the observations
are rectified.
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Figure 4.4: Continuum intensity observations from SDO/HMI and SO/PHI on
March 3rd of 2022 after rectification.

and differences in projection should now only arise in the horizontal direction tx
in both images.

Upon further inspection of the rectified images it was seen that corresponding
features were not exactly aligned in both images. The position in the t′y direction
of a feature should be the same in both rectified images, but after zooming into
these images one can compare the features that appear at a given t′y. It becomes
evident that the rectification process did not provide perfect alignment. Figure 4.5
shows this: both images are zoomed in to display only the sunspot and its near
surroundings. A dashed line is plotted on top of both images at the same position
t′y = 0.01. If the rectificationwas correct, the dashed line would intersect the sunspot
at the same place, which is not the case.

The most probable reason for this error in the rectification is that the WCS
header entries of the SO/PHI images are still inaccurate because the pointing of
the SO spacecraft, and therefore of SO/PHI and SO/PHI-HRT, is known only with
limited precision. While this thesis was written, the SO/PHI team was still working
on determining the correct header values and also removing a small image distor-
tion. The header entries which are probably inaccurate and induce errors in the
rectification are CRPIX1 CRPIX2, and CRVAL (see Table 1.1). These header quantities
are needed to determine the cameras’ intrinsic and extrinsic matrices, so errors in
these quantities end up as errors in the rectification.

The quantities in the header of the SO/PHI image were corrected using an it-
erative approach that is explained in detail in Section 4.1.1 of this chapter. After
correcting the WCS header entries and determining the intrinsic and extrinsic pa-
rameters, and rectifying the images to this new corrected frame, the features in both
images have now the same t′y, as shown in figure 4.6 .

A similar case is presented for combined observations on March 17th, 2022. In
this case SO/PHI was the spacecraft ahead, and SDO/HMI behind, withHEEQ coor-
dinates of [5.05×107, 2.52×107, −3.73×106] km and [1.48×108, 3.58×107, 2.50×106]
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Figure 4.5: Closeup to the rectified continuum intensity observations from
SDO/HMI and SO/PHI on March 3rd of 2022 displayed in rectified homogeneous
coordinates.

Figure 4.6: Closeup to the rectified continuum intensity observations from
SDO/HMI and SO/PHI on March 3rd of 2022 displayed in rectified homogeneous
coordinates after theWCS correction.
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Figure 4.7: Continuum intensity observations from SO/PHI and SDO/HMI on
March 17th of 2022 after rectification.

km, respectively, or approximately 0.38 and 1AU.The separation angle between both
spacecraft was 26○.

Figure 4.7 displays the full rectified images of the abovementioned observations.
In figure 4.8 a close up to the sunspot in both rectified images is presented. Here,
a dashed line is again plotted on a given t′y coordinate in both images, to show
that even after rectification, corresponding structures do not have the same vertical
coordinate. This is again due to inaccuracies in the WCS header entries. This case
is more dramatic than the one presented in figure 4.5. Here, the positioning is
very different and the dashed line goes through completely different regions in the
image, and the overall field of view in the close ups is different.

Figure 4.9 displays the rectified images after correcting the header entries of the
SO/PHI image. Now the dashed line is intersecting the sunspot in the same part
and coordinate in both images. The projection in the images is different, because
the sunspot in the observations from SDO/HMI appears close to the limb, so there
is a foreshortening effect in the horizontal direction. This effect is to be expected
and, does not mean that the rectification is wrong, as long as the corresponding
features are vertically aligned in the rectified images.

After the correction of the header entries has been applied, the rectified images
are suitable for the stereoscopic analysis. This correction has to be applied to each
set of observations, since the inaccuracies in the SO/PHI header entries are not con-
stant throughout different observations. The next steps for the stereoscopic analysis
are, as described in Chapter 2, to map a surface grid onto the rectified images, to
produce the corresponding VIPs by integrating the pixel intensities within each
grid cell, and finally applying the correlation method to them to find the changes
in height for the corresponding epipolar profile.
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Figure 4.8: Closeup to the rectified continuum intensity observations from SO/PHI
and SDO/HMI onMarch 17TH of 2022 displayed in rectified homogeneous coordi-
nates.

Figure 4.9: Closeup to the rectified continuum intensity observations from SO/PHI
and SDO/HMI on March 17TH of 2022 after theWCS header entries correction.
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4.1.1 Correction of the WCS Parameters for SO/PHI Data

A continuous problem of high resolution imaging of the solar surface is that there
is not enough context available needed to accurately determine the camera’s view
direction and roll angle information. In order to compare observations from a high
resolution camera with observations taken independently from another spacecraft
or telescope, this information is necessary, and the higher the resolution of the
image, the more accurate the information of the camera must be.

In this section we describe our procedure to correct the FITS header in more
detail. The goal is to bring the SO/PHI-HRT image to the best agreement with
reference images of another spacecraft, in this case SDO/HMI. This approach uses
a transformation tomove two ormore well identified objects in the reference image
fromSDO/HMI to their correct position. This transformation yields the parameters
by which the FITS header of the SO/PHI image has to be modified.

With the stereoscopic camera calibration we reverse themapping problem. This
calibration requires a set of known and well identified points. we assume that these
points on the solar surface, called trigonometric points here, have known 3D posi-
tions, obtained from the SDO/HMI images.

Assuming that the position of the spacecraft is well known, the only parameters
that are considered uncertain and to be corrected are the attitude parameters CROTA,
i.e. PC, and CRPIX1,CRPIX2 from the SO/PHI observations. This situation is often
encountered in solar imaging where the spacecraft position is well known from
orbit predictions with a precision of a few meters, while the spacecraft attitude is
not.

We use at least two (but more can be used in this calibration) trigonometric
points ri, and their corresponding observed pixel coordinates (px,i, py,i)obs to cor-
rect the attitude parameters in K and R, so that their mapped pixel coordinates
(px,i, py,i)map agree with the observed pixel coordinates.

Each trigonometric point is related to a feature that can be identified in both
SDO/HMI and SO/PHI images. Their 3D HEEQ coordinates can be derived from
their position in the SDO/HMI image and the spacecraft position as described in
Section 1.2.1.

Once theHEEQ coordinates of each trigonometric point have been determined,
their normalized coordinates in the observations of both spacecraft can be found
with equation (1.23), and and then again their pixel coordinates using the mapping
of Eq. 1.27. If R and K are correct, the pixel coordinates obtained for each point
in the SDO/HMI image should be the same as the observed ones. Else, a correction
must be applied with the procedure described here.

For each point in the SO/PHI image, there are two pixel positions: the mapped
pixel position (px,i, py,i)map, obtained from theHEEQ coordinates of each point, de-
rived using the intrinsic and extrinsic cameramatrices of the SDO/HMI image, and
the observed pixel position (px,i, py,i)obs, where the trigonometric point is actually
seen in the SO/PHI image.

We define a discrepancy vector of the stacked distances of all trigonometric
points

dr = (dr1, dr2, ..., drN) (4.1)
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where N is the number of trigonometric points used, and

dri = (px,i,map − px,i,obs, py,i,map − py,i,obs). (4.2)

Similar to dr, by measuring the distance between (px,i, py,i)obs and the rotation
center of the image at CRPIX, another vector is given by

r = (r1, r2, ..., rN) (4.3)

where
ri = (CRPIX1 − px,i,obs,CRPIX2 − py,i,obs). (4.4)

The quantities from the SO/PHI header that will be corrected are CRPIX1, CRPIX2,
and CROTA. Assuming that the corrections are small, the corrected values are given
by

CROTA′ = CROTA + dA
CRPIX1′ = CRPIX1 + dPx

CRPIX2′ = CRPIX2 + dPy.

The mapped positions of each point can then be found from

(CRPIX1 − px,i,obs) + (px,i,map − px,i,obs) =
cos(dA) ∗ (CRPIX1 − px,i,obs) − sin(dA) ∗ (CRPIX2 − py,i,obs) + dPx (4.5)

and

(CRPIX2 − py,i,obs) + (py,i,map − py,i,obs) =
sin(dA) ∗ (CRPIX1 − px,i,obs) + cos(dA) ∗ (CRPIX2 − py,i,obs) + dPy. (4.6)

A a 2N × 3 rotation matrix can be defined from Eq. 4.4 as

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−(CRPIX2 − py,1,obs) 1 0
(CRPIX1 − px,1,obs) 0 1
−(CRPIX2 − py,2,obs) 1 0
(CRPIX1 − px,2,obs) 0 1

...
−(CRPIX2 − py,N,obs) 1 0
(CRPIX1 − px,N,obs) 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (4.7)

and the vector containing the increments to the original header values is

dP = (dA, dPx, dPy). (4.8)

Then the system to solve (Eqs. 4.5 and 4.6) is determined by the distance vector
dr, the rotation matrixM and dP. This problem is overdetermined, so that a least
square minimization is required to find a solution for the system. The expression
to be minimized is

∥dr −M ∗ dP∥2, (4.9)

such that the the features have the smallest possible distance to their mapped posi-
tions, or such that dr is as small as possible, once the corrections have been applied.
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Expanding 4.9 and then equating the gradient in dP to zero yields after solving
for dP

∥dr −M ∗ dP∥2= dr2 − 2drTMdP + dP TMTMdP

−drTM +MTMdP = 0

dP = (MT ∗M)−1MT ∗ dr. (4.10)

which according to equation 4.8 is the vector with the increments to be added to
CROTA, CRPIX1, and CRPIX2, respectively.

In this case, for any given number N of points used for this affine correction,
the distance vector dr and the rotation matrix M grow, having a size of 2N , and
2N × 3, respectively, which can still be solved using expression 4.10, regardless of
the amount of points used.

The minimization of equation 4.10 gives a set of corrections to theWCS header
entries that is fitted to the points used. Since after each iteration CRPIX1, CRPIX2,
CROTA and therefore (px,i, py,i)map are updated, matrix (4.7) changes also and multi-
ple iterations are necessary. The values CROTA, CRPIX1 and CPRIX2 are updated in
each iteration, and the whole correction is repeated until convergence. After a few
iterations the quantities in dP are smaller than the precision given in the headers,
so that the final corrections to theWCS header entries are contained in dP after the
last iteration.

This algorithm yields good corrections to obtain the smallest possible dr on the
SO/PHI image, with (px,i, py,i)map obtained from (px,i, py,i)obs in the SDO/HMI im-
age. It does not take into consideration other effects, like distortion in the images,
so that the agreement between (px,i, py,i)obs and (px,i, py,i)map is as good as possible
but not always perfect.

Another fact to consider is the resolution of the images. The SDO/HMI images
have a much larger pixel than those of SO/PHI, so even if the discrepancy is larger
than a pixel in the SO/PHI images, it stillmight be smaller than one SDO/HMIpixel,
meaning that the correction is good enough for the purposes of the stereoscopic
analysis of this work.

This procedure was applied to the observations from SO/PHI and SDO/HMI
presented and described in the previous section. In this section, the observations
from March 3rd are used to visualize how the procedure works. Figure 4.10 shows
a sunspot group in both images. For the calibration, two features in the quiet Sun
were selected, marked with two different symbols in the upper panel. Assuming
that both features are located at 1 solar radius, their 3D coordinates can be found
using equation 1.41. To localize the sub pixel position of the minimum intensity of
both points, the image intensities were interpolated.

In the lower panel of figure 4.10 is the observation from SO/PHI. When map-
ping the points into the SO/PHI image, the mapped pixel positions are off from
the observed positions by about 60 SO/PHI pixels. The mapped points are marked
with corresponding symbols from the SDO/HMI image. The symbols are plotted
at (px,i, py,i)map, while the dashed line points to (px,i, py,i)obs, being elements of the
distance vector dr, lines dr1 and dr2.

Figure 4.11 shows r1 and r2, again marked with a dashed line in the SO/PHI
image.
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Figure 4.10: Close up to the field of view and the identified features for the correc-
tion. The top panel is the SDO/HMI image and the two symbols are the positions of
the two features. The bottom panel is the image from SO/PHI , where the symbols
are the positions of the features according to the SDO/HMI projection. In dashed
lines is the vector from the projected position to the actual position.
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Figure 4.11: r vector from the position of the observed features to the position of
CRPIX in the SO/PHI image.

Figure 4.12: Measure of the error during 10 iterations. The error is here quantified
as ∣dr∣
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The convergence after each iteration of the correction is shown in figure 4.12.
Most of the correction is achieved in the first iteration, and after 6 iterations the final
dr is achieved. The initial dr, measured in image pixels, was [10.66, −59.09, 12.10,
− 62.28] or ∣dr∣ = 61.25, and after the correction is [−0.584, 0.17, 0.17, −0.36], with a
norm ∣dr∣ = 0.63. There is a small remaining error because successive affine trans-
formations due tomodifications of CROTA, CRPIX1 and CRPIX2 in the SO/PHI header
restrict the possible movement in (px, py)i,map. However, the final error is orders of
magnitude smaller than the initial one, and the corrections found for CROTA, CRPIX1
and CRPIX2 are substantial.

The results of the correction are shown in figure 4.13. After the correction, the
agreement between (px, py)map and (px, py)obs is much better and the symbols are
in the same position in both images. A close up is given in figure 4.14. Again,
(px, py)map is plotted with the symbols, and the dashed line points to (px, py)obs.

With this example it is demonstrated that the procedure here proposed can im-
prove the camera attitude and improve the corresponding FITS entries. It is as-
sumed that the images from SDO/HMI are perfectly calibrated so that the observed
features can be used to calculate the 3D coordinates of the points. Even if the cali-
bration of the SDO/HMI image is not perfect, this procedure brings both images to
a consistent agreement. An error in the SDO/HMI attitude parameters would result
in an error in the SO/PHI parameters, so that both cameras would have a constant
angle and/or misplacement of the solar center. However, this would still allow to
perform the stereoscopic analysis using the calibrated data from both cameras.
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Figure 4.13: Close up to the field of view and the identified features after the correc-
tion. The top panel is the SDO/HMI image and the two symbols are the positions
of the two features. The bottom panel is the image from SO/PHI where the symbols
are the positions of the features according to the SDO/HMI projection. As opposed
to Figure 4.10, the symbols here appear in the same position as in the SDO/HMI
image.
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Figure 4.14: Close up to the trigonometric points on the solar surface used for the
correction. The symbols are the positions of the mapped points (px,i, py,i)map ob-
tained from their projection in the SDO/HMI image, and the dashed line points to
the observed position (px,i, py,i)obs in the SO/PHI image. After the correction the
distance between the projected and the observed position of each feature is smaller
than one image pixel.

4.2 Results of the Method Applied to Real Data

To test the performance of the correlationmethod with real data, observations from
October 29th of 2002 at 06:43 UT were used. The observations on this day were
selected for the test because the sunspot appeared within 25○ to the disk center in
the full disk observation of SDO/HMI , the separation of both spacecraft was not
too large, and because each spacecraft observed the sunspot from a different side,
allowing to gain information about the slopes on both sides of the sunspot. The
results in this section were produced following the steps described in Chapter 2.
Here we show some intermediate steps as well as the final results obtained. The
original, unrectified observations from both SO/PHI and SDO/HMI are presented
in figure 4.15.

On the day of the observation SDO/HMIwas the spacecraft ahead, while SO/PHI
was behind. Their positions in HEEQ coordinates of SDO/HMI and SO/PHI are
[1.48 × 108, 1.11 × 105, 1.21 × 107] km, and [5.21 × 107, −4.25 × 107, 8.86 × 106] km
respectively, corresponding to a distance from the Sun of 0.99 and 0.45 AU. The
separation between both spacecraft was of roughly 39○. Both images were rectified
and a close up to the sunspot in both rectified images is shown in figure 4.16.

When using the test data, the grid spacing was equidistant in image pixels. In
the case of real observations the grid is mapped onto the rectified images as said
in Section 2.1.1. This grid takes into account the curvature of the Sun, so that the
grid spacing is constant in the longitudinal direction ϕ, but not equidistant in the
homogeneous coordinate tx or in image pixels. Figure 4.17 shows an example of
the grid mapped onto a rectified image. The central point in the grid of figure 4.17
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Figure 4.15: Observations from SO/PHI and SDO/HMI on October 29th of 2022.

Figure 4.16: Close up to the sunspot in the rectified images of the observations of
October 29th of 2022.
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Figure 4.17: Grid mapped onto the rectified image from SDO/HMI . The horizontal
sampling size of the grid is of ∆ϕ = 3○ and the vertical spacing of dε = 0.061○.

is in the HEEQ position [6.29 × 105, −1.33 × 105, 2.64 × 105] km and has epipolar
parameters of ϕ = 30.92○, ζ = 362858.6 and a radius ρ = 593927.3 km. Each epipolar
line above and below the reference line at ζ (the epipolar line of the central point,
and third one from top to bottom) is at an inclination of dε = 0.061○, and in each
epipolar line the horizontal spacing is of ∆ϕ = 3○.

It is evident in Fig. 4.17 that towards the solar limb the grid boundaries, displayed
in small vertical lines, lie closer to each other, regardless of the pixel sampling in the
image. This affects the production of the VIPs, so that for this stereoscopic analysis
the features to study should preferably lie closer to the disk center, so that the pixel
sampling for the VIPs is approximately constant throughout the grid. Since each
grid is mapped along an epipolar profile, visualizing each horizontal grid is equiv-
alent to visualizing an epipolar profile. These two terms are used interchangeably
throughout this section.

Once the grid boundaries have beenmapped onto the rectified images, the pixel
intensities within each grid cell are integrated into one data point of the VIP. This
integration for a single VIP value may involve one or more image pixels and frac-
tions of them, depending on the grid spacing ∆ϕ and the pixel resolution of the
rectified images. The integration simply consists of an averaging of the image pixels
within each surface grid cell. Figures 4.18 and 4.19 show the epipolar grid mapped
onto both rectified images and the corresponding VIPs obtained by integrating the
image intensities within the grid cells. Figure 4.18 shows the full grid and VIPs,
while figure 4.19 shows a close up of the grid, in order to visualize the grid sam-
pling with respect to the image sampling. Given the different resolution between
the observations from SO/PHI and SDO/HMI , the grid sampling is between the im-
age resolutions of both, so that the SDO/HMI image is not too much oversampled,
and not much detail is lost in the SO/PHI image.
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Figure 4.18: Grid and VIPs on the rectified SDO/HMI (top) and SO/PHI (bottom)
images



94

Figure 4.19: Close up to the grid and VIPs on the rectified SDO/HMI (top) and
SO/PHI (bottom) images. The grid spacing used to produce the VIPS is of ∆ϕ =
0.0025○. The surface grid boundaries are marked by black sticks, the image pixel
size is visible in the color pattern.
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Figure 4.20: VIPs of the rectified images of October 29th obtained by the integration
of the grids of figure 4.18.

In this case the comparison is made only for one epipolar profile. The central
point in this grid is at a position of [6.3E05, −1.3E05, 2.6E05]km, with epipolar
coordinates of ϕ = 52.5○, ρ = 667204.3 km, ζ = 198127.4, and equivalently ε = 0.18○.
The viewing angles at the central point in the grid, are γSDO/HMI = −13.5○ = and
γSO/PHI = 25.8○ (see Eq. 2.13). The grid spacing is of ∆ϕ = 0.025○.

Once the two VIPs have been produced, it is straight forward to perform the
correlationmethod. The twoVIPs are shown in figure 4.20. The twoVIPs are shifted
with respect to one another following the relationship given in equation 2.14 and
the correlation is calculated for each shift.

The height variations are calculated at each grid point from the shifts which yield
the largest correlation. For the correlation coefficients at a given shift, the window
size plays an important role on the performance of the method and the resulting
dh. In figure 4.21 the effect of the window size is shown. On the left diagram both
VIPs are plotted, and the shadowed boxes show two different window sizes around
the same point, marked with a vertical line in the middle of the windows. The right
diagram shows the correlation as a function of the total shift dϕSDO/HMI −dϕSO/PHI

for the same grid point, but obtained by correlating the windowed data with the two
different sizes. The black curve on the right diagram was obtained by correlating
the data with a window of the size of the gray box on the left diagram, while the
green curve was obtained by correlating the data with a window size indicated by
the green box on the left diagram.

Since the shift that yields the best correlation is converted into dh, it is clear from
figure 4.21 that the size of the window plays a very important role on the estimated
height variations, even if it is calculated for the same point. Not only is the highest
correlation different at different shifts, but the overall correlation value also changes
for different window sizes. Figure 4.22 explains this effect better. The correlation
is computed as a function of the total shift for all the half window sizes between 5
and 45 grid points. The horizontal axis corresponds to the total shift, and thereby to
height; the vertical axis corresponds to the different window sizes. The color map
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Figure 4.21: Virtual images with the selected window sizes marked in shadowed
boxes (left), and the correlation as a function of the total shift, in units of grid cells,
for each of the windows of data (right).

shows the value of the correlation. In black is displayed the point for which the
correlation is largest for each window size.

The correlation is highest for larger window sizes, and its behavior is more or
less constant for larger windows. When the windows are smaller the correlation is
more local, so a better resolution can be achieved in ϕ. However, since less data is
involved in the calculations the results may be less stable and prone to have outliers.
Given that the aim is to determine the Wilson depression, a large window size will
be used for the further calculations, because the correlation is more reliable, even
if that results in a loss of detail as described in Chapter 3.

The selected half window size is 40 points. The shift dϕ that yields the best
correlation can be converted into dh by using Eqs. 2.12, 2.14, and 2.16 and the process
is repeated for all the grid points in the VIPs while using the same window size for
each one of them. The estimated height variations along the epipolar profile of
figure 4.20 are shown in figure 4.23.

The reconstructed dh in the lower panel of figure 4.23 shows a larger depression
in the center of the sunspot, as well as some smaller scale variations; but a general
upward trend in the resulting dh curve is also present. This effect could be due
to distortion in the images, or again to a wrong value in the header entries of the
SO/PHI image. To test if this upward trend is systematic throughout the image, the
height variation was calculated along five different profiles in the quiet Sun. The
corresponding epipolar lines are displayed in figure 4.24, and the respective VIPs in
figure 4.25. The height variation was calculated for each of the epipolar profiles in
figure 4.24.

The results of this test are displayed in figure 4.26. They show the same increas-
ing trend as the results from figure 4.23. It is present in all the reconstructed dh
curves. This trend can directly be traced back to the VIPs. It can be seen, comparing
the maxima and minima of the VIPs in figure 4.25 that there is a shift between the
VIPs that increases steadily from left to right. The VIPs from SO/PHI have an offset
towards the end, compared to the VIPs from SDO/HMI. We assume that this is an
artifact due to either a distortion in the images or due to an imprecise CDELT value,
i.e. an inaccuracy in the plate scale.

A wrong CDELT in the VIPs of SO/PHI in figure 4.25 would result in a stretching
with respect to those of SDO/HMI. For this reason one can assume that the CDELT
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Figure 4.22: 2D map of the correlation as a function of the total shift for a range of
window sizes.

Figure 4.23: VIPs (top) and reconstructed dh (bottom) corresponding to the epipolar
profile of Fig. 4.18
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Figure 4.24: Epipolar profile and grids along the quiet Sun.

Figure 4.25: Virtual images corresponding to the grids on figure 4.24. The order is
the same from top to bottom.
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Figure 4.26: Estimated height variation curves for the quiet Sun by the correlation
of the pairs of VIPs of figure 4.25. The order is the same from top to bottom.

value in the SO/PHI images is slightly too large. A correction in the CDELT values
from 0.5 arc seconds as given in the header of the SO/PHI image, to 0.49745 arc
secondswasmade, and then the rectification and recalculation of all the parameters,
as well as the VIPs from SO/PHI were done. The corrected VIPs are displayed in
figure 4.27, where the stretching is no longer visible, as opposed to theVIPs of figure
4.25.

The resulting dh curves are displayed in figure 4.28. The upward trend is re-
moved. Some of the dh results present gaps with no data in the reconstructed height
variation curves. This occurs when the correlation method yields large outliers in
the results, so those values were deleted from the final curves.

Equivalent to calculating the height variations along the epipolar profiles of fig-
ure 4.24, the height variations along the epipolar profile of figure 4.18 are recalcu-
lated with the correction in the CDELT and presented in figure 4.29. After the plate
scale value correction the dh curve of figure 4.29 looks similar to that of figure 4.23
but without the upward trend.

The height variations of figure 4.29 show a base level that corresponds to the
quiet Sun, and a depression within the sunspot of approximately 700 − 800 km,
even though the absolute height values were not determined, since the quiet Sun to
the right of the spot appears to be offset by 200 km from the standard solar radius
R⊙ = 6.96 × 108 km, used in the calculations. The dh curve also reconstructs the
height variations in the penumbra region of the sunspot wider than it appears in the
VIPs, and there is a visible offset between theminimum intensity and theminimum
dh estimate. In this example profile, the topography of the sunspot shows a much
smaller bottom plateau than its brightness variation suggests.
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Figure 4.27: Virtual images corresponding to the grids on figure 4.24 after the cor-
rection of the CDELT values in the SO/PHI image. The order is the same from top
to bottom.

Figure 4.28: Estimated height variation curves for the quiet Sun by the correlation
of the pairs of VIPs of figure 4.27. The order is the same from top to bottom.



101 CHAPTER 4. APPLICATION OF THE METHODTO REAL DATA

Figure 4.29: VIPs (top) and reconstructed dh (bottom) corresponding to the epipolar
profile of Fig. 4.18 after the correction of the CDELT values in the SO/PHI image.

In the following sections we investigate, whether this result holds if the parameters
of our calculation are modified.

Testing the Effect of Different Grid andWindow Sizes

In this section different grid spacing is tested, estimating the height for the same
epipolar profile as in the previous section, but with a grid ten times finer, and a grid
four times more coarse than the grid displayed in figure 4.18. The window size used
was the same as for the height variations in figure 4.29.

The results of varying the grid spacing are shown in figures 4.30 and 4.31. The
grid spacing used to produce the height estimates from figure 4.30 was ten times
finer than that of the figure 4.29, or ∆ϕ = 0.0025○, corresponding to ρ∆ϕ = 30 km.
The grid spacing used for figure 4.31 was of ∆ϕ = 0.1○, or ρ∆ϕ = 1165 km.

The reconstructed height using a finer grid behaves similarly to that of figure
4.29. There is a slight improvement in the resolution so that finer structures can be
reproduced but the overall behavior of the results does not change significantly in
comparison with the first results. On the other hand, if the grid is very coarse, the
quality of the results decreases. The overall depth of the depression of 800 km was
reproduced for all grid sizes. To find the optimum grid size the effect of varying the
grid only slightly was also tested: the grid size was 1.5 and 2 times finer, and then
coarser than that of Fig. 4.29. Varying the grid size slightly did not affect the results
in any remarkable way, and therefore they are not presented here.
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Figure 4.30: VIPs (top) and reconstructed dh (bottom) corresponding to the epipolar
profile of Fig. 4.18 using a grid size of ∆ϕ = 0.0025○ ≃ 30 km.

Figure 4.32: VIPs (top) and reconstructed dh (bottom) corresponding to the epipolar
profile of Fig. 4.18 using a variable window size.
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Figure 4.31: VIPs (top) and reconstructed dh (bottom) corresponding to the epipolar
profile of Fig. 4.18 using a grid size of ∆ϕ = 0.1○ ≃ 1165 km.

Figure 4.32 presents the reconstructed height variations for the standard grid size of
figure 4.18, but instead of keeping the window size constant, as for figure 4.29, here
the window size is varied, and the selected height is that for which the correlation is
highest, within all the half window width range between 15 and 40 grid points (see
Figure 4.22).

Using a coarser grid results in a reconstructed heightwithmany irregular fluctu-
ations. On the other hand, using a finer grid or a variable window take much longer
computation times, and does not yield a reconstructed height that can be consid-
ered better than that of figure 4.29. For this reason, the grid spacing of∆ϕ = 0.0025○
and a half window width of 40 grid points is a good choice and will be used for the
stereoscopic analysis of different epipolar profiles for this particular observations.
For other observations, these parameters will have to be adjusted.

Testing the Same Profile Observed 8 Minutes Earlier

To test the consistency in the performance of the method we applied it to observa-
tions of the same sunspot but obtained 8 minutes before. The parameters were the
same as those used for Fig. 4.29: the grid was centered at the same position within
the sunspot, the grid half windowwidth sizes are the same, and the correction to the
CDELT value was as well the same. The estimated height is presented in Fig. 4.33.

The height estimates of the sunspot from the observations at 06:35 UT earlier
are plotted on top of the results of Fig. 4.29, from observations made at 06:43 UT.
The geometrical mean error (see Eq. 2.15) is of ±190 km at the center of the spot
and is plotted as a shaded belt around the results from the original observations.
The results from the earlier observations are plotted on top in black, and fall within
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Figure 4.33: VIPs (top) and reconstructed dh (bottom) corresponding to the epipolar
profile of Fig. 4.18 in blue and from observations made 8 minutes earlier in black.
The blue shaded area marks the range of ±1

4hth ≈ 190 km.

the error range in most of the curve. Due to the evolution of the sunspot, a perfect
agreement between the two height estimates cannot be expected. This is particularly
valid in the left-side penumbra (see Fig. 4.16 at t′y ≈ 0.00325) and the quiet Sun areas
around the sunspot. Since the results are similar enough, particularly in the umbra
of the sunspot, we can consider that the performance of the method is consistent
throughout different observations.

Extending the Test to Other Epipolar Profiles

The correlation method was applied to four more epipolar profiles in order to test
if themethod performs consistently throughout the sunspot. All the four tests were
performed with a grid spacing of ∆ϕ = 0.025○ and a half window width of 40 grid
points. The selected epipolar profiles are displayed in figure 4.34. The images are
zoomed onto the sunspot, so that it is clear where each grid intersects the sunspot.
The correspondingVIPs and height variation estimates are presented in figures 4.35,
4.36, 4.37, 4.38

All the reconstructed height variation curves present a ’higher’ plateau region in
the quiet Sun, and the deepest visible layers close to the center of the umbra. The
quiet Sun is consistently at a height between 200 and 400 km, while the center of the
umbra at around −600 to 750 km, for which the Wilson depression of this sunspot
can be estimated to be of about 800 km, even though the range goes up to around
1000 km.
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Figure 4.34: Close up to the sunspot in the SO/PHI and SDO/HMI observations. The
horizontal lines are the grids to produce the VIPs at each corresponding epipolar
profile.

Figure 4.35: VIPs (top) and reconstructed dh (bottom) corresponding to the first
epipolar profile from top to bottom displayed in Fig. 4.34
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Figure 4.36: VIPs (top) and reconstructed dh (bottom) corresponding to the second
epipolar profile from top to bottom displayed in Fig. 4.34

Figure 4.37: VIPs (top) and reconstructed dh (bottom) corresponding to the third
epipolar profile from top to bottom displayed in Fig. 4.34.
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Figure 4.38: VIPs (top) and reconstructed dh (bottom) corresponding to the fourth
epipolar profile from top to bottom displayed in Fig. 4.34

An offset is present in all the resulting curves, including those for the quiet Sun,
where the base level is always estimated above the zero level by a couple of hundred
kilometers, but this offset is consistent throughout all of the results, and therefore
not relevant if the depth of the Wilson depression is estimated by the difference
between the quiet Sun and the center of the umbra. Another effect that appears
throughout the results is that there are height variations on a scale that is smaller
than the scale of the Wilson depression, but are still of the order of a couple hun-
dred kilometers. This effect will be further discussed in the next section, as well
as possible ways to reduce it. The last consistent effect in the results, and related
to the one mentioned before, is that the quiet Sun level is always much better re-
produced on the right side of the profiles, while on the left side there are always
more irregular height variations. There is also a general horizontal offset between
the minimum in the intensity profiles and the minimum dh in the umbra of the
sunspot. The results obtained with this method estimate theWilson depression to
be roughly 800 km.

4.2.1 Full 2D Height Map

Similarly to Section 3.3.6, a 2D map was produced to visualize the height variation
on a surface. This 2D map was produced by analyzing epipolar profiles with a sep-
aration of ∆ε ≈ ∆t′y ≈ 5 × 10−6, corresponding to roughly 300 km. Each profile was
analyzed using the same parameters as for figure 4.29.

The top panel of Fig. 4.39 displays the FOV that was analyzed, and the results
are shown on the bottom panel. The contours of the umbra, the penumbra and a
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few pores taken from the intensity image are plotted onto the results to visualize
the position on the surface on which the height variations are estimated. To reduce
the number of outliers, a condition was set for the results, so that only the dh values
for which the correlation was higher than a threshold of C ≥ 0.995 were considered.
Regions where the correlation value was lower were left empty and are displayed in
white in the figure. The projection on the top and bottom panels of Fig. 4.39 are
different because the horizontal coordinates on the top panel are rectified homo-
geneous coordinates (t′x), while those in the 2D map are azimutal (ϕ).

Figure 4.39: 2D colormap (bottom) of the height variations within the FOV of the
top diagram. On top of the results are plotted the intensity contours to the umbra,
penumbra and a fewpores. The dashed line (upper right corner of the bottompanel)
indicates the width of the window.

The results from figure 4.39 show that in the umbra of the sunspot, as well as in
some of the pores, the dh estimates are deepest. However, even though the position



109 CHAPTER 4. APPLICATION OF THE METHODTO REAL DATA

of these large negative dh estimates agrees with the position of the visual sunspot
contours, the size of the reconstructed structures appearsmuch larger in the results.

To test if the reproduced width of the structures in the results is due to the
window size, we convolved the original image with the same window, and obtained
the contours for the umbra, the penumbra and one of the pores. This is displayed
in Fig. 4.40 The other pores were too small and they are no longer visible after
the convolution. Plotting these contours in a 2D map shows that the width of the
umbra of the sunspot and of the pore are similar to the width of the structures after
convolving the image with the window. Some of the other pores are not visible after
the convolution, so their contours are not plotted on top of the reproduced results.

With the previous results it can be considered that the umbra of sunspots and
pores can be reproduced with the method developed in this work. The dh value of
these structures is of the order of −500 to −1000 km. The width of the reproduced
structures is comparable to the width of the window size used.

4.3 Summary and Discussion
In the previous sections we demonstrated that the correlation method could be ap-
plied to real observations from SO/PHI and SDO/HMI. Performing a stereoscopic
analysis was possible even though the data set was obtained from completely dif-
ferent instruments with different resolution and views from points with different
distances to the Sun.

The results obtained with this method seem promising to estimate the Wilson
depression. The obtained results fall within the range of previous observational
studies by Prokakis (1974), which estimate the Wilson depression within a range of
690 to 2100 km. More precise Wilson depression estimates from indirect methods
are those of Martínez Pillet and Vázquez (1993), Solanki et al. (1993), and Löptien
et al. (2020), who estimate a Wilson depression of ≈600 km, ≈400 km, and 500-700
km, respectively. The Wilson depression estimates from Figs. 4.29, and Figs. 4.35
to 4.38 are of roughly 800 km, which is slightly larger than the estimates previously
obtained for different sunspots. However, the results of the 2D map of figures 4.39
and 4.40 give a range for the Wilson depression of −500 to −1000 km, so that pre-
vious estimates also fall within this range. The difference in the results obtained
here and previous results could be also due to differences in the methods or to real
depth differences between different sunspots, to differences in size, magnetic field
strength, etc.

Applying the method to real data turned out to be more complicated than with
the test data. In order to be able to use the SO/PHI observations, some additional
work previous to the rectification and analysis had to be conducted. The WCS
header entries of the SO/PHI images need to be adjusted. A short iterative algorithm
was created for this purpose, after which theWCS header entries of the SO/PHI im-
ages were fixed and the results of the rectification were precise to an order of one
image pixel, which is a level of precision required for this particular analysis.

Once the header entries for SO/PHI were fixed, the results showed a linear up-
ward trend in the reconstructed height, probably given by an inaccurate CDELT value
in the SO/PHI image header, and possibly also to an optical distortion. This value
was as well adjusted and the trend in the results was removed. The procedure for
this correctionwas not included in this work because it consisted only in trying with
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different values until each reconstructed height profile of the quiet Sun appeared
flat on large scales. For this reason the corrected CDELT value is only an estimate.
Adjustments of this value, as well as other header entries corrections, for any given
pair of combined observations of SO/PHI and other instrumentmight be necessary.

On the large scale, the correlationmethod yields a height level for the quiet Sun,
and one for the umbra of the sunspot. Smaller scale height variations of the order
of a few hundreds of km appear throughout all of the results. It can be seen in
the VIPs, that in many of the regions where these irregular fluctuations appear, the
structures present in the VIPs are unsimilar, so that the correlation method gives
a wrong estimate by correlating unrelated structures. However, these irregularities
in the results are of the order of the size of one SO/PHI pixel, and smaller than that
of one SDO/HMI pixel, so that the precision of the results is limited to the image
pixel size and fluctuations with periods smaller than that size are to be expected.
It is also worth mentioning that the magnitude of the Wilson depression is of the
order of just a couple of pixels, so that the accuracy of the results is comparable and
limited by the spatial resolution of the currently available data. The theoretically
resolvable range (see Eq. 2.15) at the center of the sunspot is is ±383 km, giving
a mean uncertainty for our height estimates of ±190 km. Further random errors
introduced during the resampling for rectification and correlation can be expected
to scale also with the pixel resolution and are probably of similar magnitude.

There are three main possibilities for these differences in the VIPs. The first
one is a consequence of the fact that the line of sight is different for each one of
the spacecraft, especially in inclined areas where the line of sight is very different.
These differences in line of sight give small scale differences between the images,
e.g. due to radiative transfer effects, in addition to the disparity of features, that is
the key difference between images used in stereoscopy.

Another possible explanation is the limited resolution of the images. Since in
Section 3.3.7 it was seen that for resolutions of the order of hundreds of km, the
only quantity that could be retrieved from this analysis is the Wilson depression,
whereas other smaller scale height fluctuations cannot be retrieved by this method.
Not only that, but the difference in resolution from SO/PHI and SDO/HMI is large,
so that the smaller scale structures, such as fine structure in the penumbra or the
granules in the quiet Sun, are observed inmore detail by SO/PHI than by SDO/HMI,
resulting in VIPs with different levels of detail, which induce numerical errors in
the correlation procedure. Another possible explanation for the differences in the
VIPs is noise in the data. There is an intrinsic level of noise for the observations,
but errors induced in the image pixel discretization, the interpolation induced by
the rectification and the integration of the observations into theVIPs can also result
in noise in the data.

A consequence of the resolution of the data is that the structures tend to be re-
produced wider than they are. This effect was seen in Chapter 2, Section 3.3.7, where
the test images were degraded to a resolution similar to the resolution that real ob-
servations have. For the given resolution of the images, this effect is also present in
the results, so that the shape of the features cannot be well reproduced but theWil-
son depression can be estimated if the difference between the quiet Sun level and
the umbra is calculated. The width of the reproduced structures is directly related
to the size of the window used for the correlation. Using higher resolution data
will allow to use smaller windows, or at least the size of the window will be smaller
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with respect to the size of structures in the images, and therefore the reproduced
structure will have a more realistic size.

The last possible explanation for the unreliable fluctuations in the results could
be distortion in the images. The observations of both images have been corrected
for distortion, but there is the possibility that a residual distortion is still present in
the images. This could yield differences in the rectification of the images and there-
fore in not scanning the exact same epipolar line in both images, resulting in small
scale differences between both VIPs. Another possible effect due to a distortion in
the images is the horizontal offset between the minimum intensity in the VIPs and
the position of the minimum dh in the umbra of the spot, since the direction of
this offset changes uniformly throughout the different epipolar profiles in the FOV.

Most likely, the irregularities in the results arise from a combination of the ef-
fects mentioned above. However, the relevant feature to be determined, theWilson
depression, was reproduced. As well as with the test data, there is a general offset
of the base level, so that only relative heights can be estimated with this method.
Adding an error number, or a parameter that indicates if the reconstructed height
is reliable at each point would be of advantage, and will be included in any further
work on which this stereoscopic method is applied.

Given that there are still a number of issues in the data that need to be fixed, the
results obtained with this method are not final yet, but they show that the method
is promising in estimating the Wilson depression in the umbra of sunspots and
pores.

The correlationmethod yields reliable results, but they are limited by the quality
of the observations available. Analyzing a larger number of combined observations
is necessary in order to really assess the capabilities of this method and how much
the results are affected by the method limitations, and how much to external ef-
fects, like the resolution and noise (as discussed in Chapter 3), it is to be expected
that with higher resolution observations, the reliability as well as the level of detail
reproduced with this method will increase.

Lastly, it is worth mentioning that given the way the VIPs are produced is differ-
ent between the test and the real data, applying the optimization method to the real
data would require further modifications, which are out of the scope of this work.
Future work could consist in adapting the optimization method to the way the VIPs
of the real data are produced, in order to further improve the results obtained by
the correlation method.
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Figure 4.40: 2D colormap (bottom) of the height variations within the FOV of the
top diagram. On top of the results are plotted the intensity contours to the um-
bra, penumbra and a few pores. The dashed line (upper right corner of the bottom
panel) represents the width of the window. The horizontal axis in the top diagram
is t′x, while that on the 2D map is the azimuthal coordinate ϕ. This change of coor-
dinates is to avoid the oblique projection in normalized coordinates as seen in the
left diagram.
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Conclusions

A stereoscopic method for the study of height variations in the solar photospohere,
more specifically the Wilson depression, was developed. The method is based on
the correlation of the brightnesses (VIPs) along epipolar profiles. From the best
shift of the VIPs we find the height variations along the epipolar lines.

The method was first tested on synthetic data and then applied to real obser-
vations. The method is reliable in estimating large scale height variations, such as
the Wilson depression. Even though the results are limited by inaccuracies in the
data, as well as the current resolution available in the observation, themethod yields
reliable results.

The resolution of the images is the biggest limiting factor for the results. At the
current resolution of the observations, the disparity in the umbra is of the order
of two pixels. As discussed in Chapter 2, if the disparity is 0, then the object is at
infinity or at a distance larger than what can be distinguished with the given resolu-
tion. Therefore it is to be expected that for higher resolution images the results will
improve considerably, and even smaller scale height variations will be reproduced
with some accuracy.

At the current resolution of the available observations, the structures are repro-
duced wider than they are, but the estimate of the Wilson depression in sunspots
obtained with this method, for synthetic and for real observations agrees with pre-
vious estimates (see discussion of Chapters 3 and 4). It is also to be expected, that
with higher resolution observations, the 3D structure within sunspots, as well as
heigh variations on the quiet Sun, could be measured.

Given that the size of the reproduced structures is of the same order as the image
resolution and the method can still reproduce the Wilson depression of sunspots,
our method seems like a very promising tool to study photospheric surface height
variations, and it’s performance will improve significantly if higher resolution im-
ages become available.

When one of the viewing angles approaches the slope of the sunspot on its near
side, information on that slope is lost by this camera, and therefore some inaccu-
racies arise concerning the height estimates of that slope. This must be considered
when the results are analyzed. It can be expected that this effect will be present in
the results if the viewing angles exceed γ = 30○, according to the tests performed.

For this work, observations of sunspots on three different days were available.
However, for the stereoscopic analysis only the observations of one day, October
29th of 2002, could be used. The observations of March 3rd of 2022 were made
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with a spacecraft separation angle of about 6○. This separation is too small for a
stereoscopic analysis as discussed in Chapter 3, Section 3.3.3. In the observations
of March 17th of 2022, the sunspot appears too close to the limb in the observation
from SDO/HMI, which decreases the resolution and induces some distortion in the
observations. Also, both spacecraft observed the sunspot from the same side, which
in principle still allows for a stereoscopic analysis, but information on the near slope
of the sunspot is lost for both cameras. Therefore havingmultiple observations does
not mean that all of them are suitable for this stereoscopic analysis.

5.1 Outlook
Considering that the method as presented here is reliable for stereoscopic analysis
of height variations on the solar surface, some improvement can still be made. First
of all implementing a measure of the error or of the reliability of the estimate on
each point of the profile would help assess the quality of the work in a systematic
way, so that one can know where the estimates are more reliable and where they are
not. Naturally, applying themethod tomore observations will also give a better idea
of how reliable the results are.

Possible improvements for themethod include reducing the number of outliers
in the results by studying in depth the effect on the results that different window
sizes with respect to the resolution of the data have. Expanding the method to in-
clude the optimization procedure to improve the obtained height vector is also a
possible improvement for this method that could yield better results.

If the performance of this method is good and consistent throughout different
combined observations, then it can be applied not only to estimate the Wilson de-
pression, but also to use these estimates for other scientific studies. For example,
equation (1.21) can be used to estimate the curvature force within sunspots (Martínez
Pillet & Vázquez, 1993) from the Wilson depression. With more observations are
available, more sunspots can be studied and therefore, both the reliability of this
method and theWilson depression of sunspots can be further studied.

The height variations can be estimated only in the spatial direction of the epipo-
lar profile. Under the assumption of a radial variation of height within sunspots, it
can be extended to other parts of the sunspot (Solanki et al., 1993). Another way to
have information on more than one direction would be to perform the analysis on
the same sunspot but with three observing cameras, which would yield three mu-
tual epipolar planes and therefore height variations along three epipolar directions.
However, this possibility is currently not available, as no other instrument observes
the Sun at high resolution in the visible spectral range outside the Sun-Earth line
besides SO/PHI.

An extension and application of themethod here described is to stereoscopically
determine and compare the height at different wavelengths. This is particularly in-
teresting when considering the core of a spectral line in addition to the continuum
observations presented here. This will allow comparing the line formation height
in different solar features and may allow constraining the temperature gradient.

Another extension of this work consists in analysing multiple sunspots in order
to perform a statistical analysis of the relation of the Wilson depression with the
size, the curvature, or the magnetic field strength; or to use the Wilson depression
measurements to improve other sunspot models (e.g. Rempel, 2014).
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As said before, the availability of higher resolution observations will improve
the results obtained with this method. Current observations of sunspots of SO/PHI
combined with observations of e.g. HINODE (Kosugi et al., 2007), could already im-
prove the results; and the availability of more observations of more sunspots will not
only help to better assess its performance, but it will also allow to conduct scientific
studies where theWilson depression or other height variations in the photosphere
will play an important role.
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